基于超像素合并和广义学习系统的高光谱图像分类

Fuding Xie, Rui Wang, Cui Jin, Geng Wang
{"title":"基于超像素合并和广义学习系统的高光谱图像分类","authors":"Fuding Xie, Rui Wang, Cui Jin, Geng Wang","doi":"10.1111/phor.12493","DOIUrl":null,"url":null,"abstract":"Most spectral–spatial classification methods for hyperspectral images (HSIs) can achieve satisfactory classification results. However, the common problem faced with these approaches is the need for a long training time and sufficient training samples. To address this issue, this study proposes an effective spectral–spatial HSI classification method based on superpixel merging, superpixel smoothing and broad learning system (SMS‐BLS). The newly introduced parameter‐free superpixel merging technique based on local modularity not only enhances the role of local spatial information in classification, but also maintains class boundary information as much as possible. In addition, the spectral and spatial information of HSIs is further fused during the superpixel smoothing process. As a result, with limited training samples, using merged and smoothed superpixels instead of pixels as input to the broad learning system significantly improves its classification performance. Moreover, the merged superpixels weaken the dependence of the classification results on the superpixel segmentation scale. The effectiveness of the proposed method was validated on three HSI benchmarks, namely Indian Pines, Pavia University and Salinas. Experimental and comparative results show the superiority of the method to other state‐of‐the‐art approaches in terms of overall accuracy and running time.","PeriodicalId":22881,"journal":{"name":"The Photogrammetric Record","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hyperspectral image classification based on superpixel merging and broad learning system\",\"authors\":\"Fuding Xie, Rui Wang, Cui Jin, Geng Wang\",\"doi\":\"10.1111/phor.12493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most spectral–spatial classification methods for hyperspectral images (HSIs) can achieve satisfactory classification results. However, the common problem faced with these approaches is the need for a long training time and sufficient training samples. To address this issue, this study proposes an effective spectral–spatial HSI classification method based on superpixel merging, superpixel smoothing and broad learning system (SMS‐BLS). The newly introduced parameter‐free superpixel merging technique based on local modularity not only enhances the role of local spatial information in classification, but also maintains class boundary information as much as possible. In addition, the spectral and spatial information of HSIs is further fused during the superpixel smoothing process. As a result, with limited training samples, using merged and smoothed superpixels instead of pixels as input to the broad learning system significantly improves its classification performance. Moreover, the merged superpixels weaken the dependence of the classification results on the superpixel segmentation scale. The effectiveness of the proposed method was validated on three HSI benchmarks, namely Indian Pines, Pavia University and Salinas. Experimental and comparative results show the superiority of the method to other state‐of‐the‐art approaches in terms of overall accuracy and running time.\",\"PeriodicalId\":22881,\"journal\":{\"name\":\"The Photogrammetric Record\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Photogrammetric Record\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/phor.12493\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Photogrammetric Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/phor.12493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大多数针对高光谱图像(HSI)的光谱空间分类方法都能取得令人满意的分类结果。然而,这些方法面临的共同问题是需要较长的训练时间和足够的训练样本。针对这一问题,本研究提出了一种基于超像素合并、超像素平滑和广泛学习系统(SMS-BLS)的有效光谱空间 HSI 分类方法。新引入的基于局部模块化的无参数超像素合并技术不仅增强了局部空间信息在分类中的作用,还尽可能地保留了类边界信息。此外,在超像素平滑处理过程中,HSI 的光谱和空间信息会进一步融合。因此,在训练样本有限的情况下,使用合并和平滑的超像素代替像素作为广义学习系统的输入,可以显著提高其分类性能。此外,合并后的超像素还能削弱分类结果对超像素分割比例的依赖性。在印度松、帕维亚大学和萨利纳斯三个人机交互基准上验证了所提方法的有效性。实验和比较结果表明,就整体准确性和运行时间而言,该方法优于其他最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hyperspectral image classification based on superpixel merging and broad learning system
Most spectral–spatial classification methods for hyperspectral images (HSIs) can achieve satisfactory classification results. However, the common problem faced with these approaches is the need for a long training time and sufficient training samples. To address this issue, this study proposes an effective spectral–spatial HSI classification method based on superpixel merging, superpixel smoothing and broad learning system (SMS‐BLS). The newly introduced parameter‐free superpixel merging technique based on local modularity not only enhances the role of local spatial information in classification, but also maintains class boundary information as much as possible. In addition, the spectral and spatial information of HSIs is further fused during the superpixel smoothing process. As a result, with limited training samples, using merged and smoothed superpixels instead of pixels as input to the broad learning system significantly improves its classification performance. Moreover, the merged superpixels weaken the dependence of the classification results on the superpixel segmentation scale. The effectiveness of the proposed method was validated on three HSI benchmarks, namely Indian Pines, Pavia University and Salinas. Experimental and comparative results show the superiority of the method to other state‐of‐the‐art approaches in terms of overall accuracy and running time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信