Syed Hameed Hussain, Aqeel Ahsan Khurram, Adnan Munir, Muhammad Salman Khan, Aamir Mubashar
{"title":"堆叠顺序、金属片和纳米颗粒对 FML 强度和韧性的影响","authors":"Syed Hameed Hussain, Aqeel Ahsan Khurram, Adnan Munir, Muhammad Salman Khan, Aamir Mubashar","doi":"10.1177/07316844241250182","DOIUrl":null,"url":null,"abstract":"The effect of nano particle inclusion and the stacking sequence/metal volume fraction on the tensile strength and energy absorption properties of Fiber Metal Laminates (FML) is investigated. The FML structure is composed of lightweight thin sheets of aerospace grade aluminum alloy 7075 and unidirectional glass fiber composite sheets with Araldite LY5052 thermoset epoxy system as the matrix. The volume fraction of aluminum sheets in the FML structure was varied by increasing the number of aluminum sheets from 2 to maximum 4. In the second batch, the epoxy matrix is reinforced with of multi-walled carbon nano tubes and nano diamond particles together, each with 0.15 wt%. The purpose is to enhance the properties of the epoxy matrix to facilitate higher inter-laminate adhesion (FRP and aluminum). The results of the tensile testing show that with the increase of the metal volume fraction, the tensile strength as well energy absorbing capability (toughness) both are increased. The inclusion of the nano-reinforcements has increased the tensile strength and the toughness of the FML structure as compared to that of the FMLs without nano particles. The strength-to-weight ratio of FML structures is also increased after the inclusion of nano reinforced as desired for aerospace applications.","PeriodicalId":16943,"journal":{"name":"Journal of Reinforced Plastics and Composites","volume":"212 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of stacking sequence, metal sheets, and nano particle on strength and toughness of FMLs\",\"authors\":\"Syed Hameed Hussain, Aqeel Ahsan Khurram, Adnan Munir, Muhammad Salman Khan, Aamir Mubashar\",\"doi\":\"10.1177/07316844241250182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effect of nano particle inclusion and the stacking sequence/metal volume fraction on the tensile strength and energy absorption properties of Fiber Metal Laminates (FML) is investigated. The FML structure is composed of lightweight thin sheets of aerospace grade aluminum alloy 7075 and unidirectional glass fiber composite sheets with Araldite LY5052 thermoset epoxy system as the matrix. The volume fraction of aluminum sheets in the FML structure was varied by increasing the number of aluminum sheets from 2 to maximum 4. In the second batch, the epoxy matrix is reinforced with of multi-walled carbon nano tubes and nano diamond particles together, each with 0.15 wt%. The purpose is to enhance the properties of the epoxy matrix to facilitate higher inter-laminate adhesion (FRP and aluminum). The results of the tensile testing show that with the increase of the metal volume fraction, the tensile strength as well energy absorbing capability (toughness) both are increased. The inclusion of the nano-reinforcements has increased the tensile strength and the toughness of the FML structure as compared to that of the FMLs without nano particles. The strength-to-weight ratio of FML structures is also increased after the inclusion of nano reinforced as desired for aerospace applications.\",\"PeriodicalId\":16943,\"journal\":{\"name\":\"Journal of Reinforced Plastics and Composites\",\"volume\":\"212 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Reinforced Plastics and Composites\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/07316844241250182\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Reinforced Plastics and Composites","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/07316844241250182","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Role of stacking sequence, metal sheets, and nano particle on strength and toughness of FMLs
The effect of nano particle inclusion and the stacking sequence/metal volume fraction on the tensile strength and energy absorption properties of Fiber Metal Laminates (FML) is investigated. The FML structure is composed of lightweight thin sheets of aerospace grade aluminum alloy 7075 and unidirectional glass fiber composite sheets with Araldite LY5052 thermoset epoxy system as the matrix. The volume fraction of aluminum sheets in the FML structure was varied by increasing the number of aluminum sheets from 2 to maximum 4. In the second batch, the epoxy matrix is reinforced with of multi-walled carbon nano tubes and nano diamond particles together, each with 0.15 wt%. The purpose is to enhance the properties of the epoxy matrix to facilitate higher inter-laminate adhesion (FRP and aluminum). The results of the tensile testing show that with the increase of the metal volume fraction, the tensile strength as well energy absorbing capability (toughness) both are increased. The inclusion of the nano-reinforcements has increased the tensile strength and the toughness of the FML structure as compared to that of the FMLs without nano particles. The strength-to-weight ratio of FML structures is also increased after the inclusion of nano reinforced as desired for aerospace applications.
期刊介绍:
The Journal of Reinforced Plastics and Composites is a fully peer-reviewed international journal that publishes original research and review articles on a broad range of today''s reinforced plastics and composites including areas in:
Constituent materials: matrix materials, reinforcements and coatings.
Properties and performance: The results of testing, predictive models, and in-service evaluation of a wide range of materials are published, providing the reader with extensive properties data for reference.
Analysis and design: Frequency reports on these subjects inform the reader of analytical techniques, design processes and the many design options available in materials composition.
Processing and fabrication: There is increased interest among materials engineers in cost-effective processing.
Applications: Reports on new materials R&D are often related to the service requirements of specific application areas, such as automotive, marine, construction and aviation.
Reports on special topics are regularly included such as recycling, environmental effects, novel materials, computer-aided design, predictive modelling, and "smart" composite materials.
"The articles in the Journal of Reinforced Plastics and Products are must reading for engineers in industry and for researchers working on leading edge problems" Professor Emeritus Stephen W Tsai National Sun Yat-sen University, Taiwan
This journal is a member of the Committee on Publication Ethics (COPE).