{"title":"多壁碳纳米管/编织玻璃/环氧混合纳米复合材料:制造方法和环氧基质类型的影响","authors":"Nik Amira Natasha Nik Amrul Faaizol, Mariatti Mustapha, Nik Akmar Rejab, Henri Vahabi","doi":"10.1177/07316844241252321","DOIUrl":null,"url":null,"abstract":"The hybridization of nanofillers into glass fibre reinforcement is a promising strategy to improve the properties of the composite materials. The study aims to investigate the properties of hybrid nanocomposites consisting of multi-walled carbon nanotube (MWCNT)/woven glass/epoxy composites. The effect of different fabrication methods and different types of epoxy matrices was also investigated. For method 1, MWCNT was mixed with epoxy and impregnated into 3-ply woven glass fabrics using the hand lay-up method, followed by a vacuum bagging process. Meanwhile, for method 2, the woven glass fabrics were spray coated with MWCNT aqueous suspension and 3-ply woven glass fabrics were stacked together and impregnated with epoxy using the hand lay-up method followed by vacuum bagging. Results showed that composite laminates prepared by method 2 with 0.5 wt% MWCNT exhibit higher impact and flexural strength with 32.9% and 29% increments compared to method 1, respectively. Based on the flammability test, it was observed that hybrid laminate composites fabricated by both methods could self-extinguish. It was found that hybrid laminated composites using bisphenol A as an epoxy matrix show higher impact strength and flexural strength with 20.7% and 12% increments compared to epoxy bio-resins, respectively.","PeriodicalId":16943,"journal":{"name":"Journal of Reinforced Plastics and Composites","volume":"12 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-walled carbon nanotubes/woven glass/epoxy hybrid nanocomposites: Effect of fabrication methods and types of epoxy matrices\",\"authors\":\"Nik Amira Natasha Nik Amrul Faaizol, Mariatti Mustapha, Nik Akmar Rejab, Henri Vahabi\",\"doi\":\"10.1177/07316844241252321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The hybridization of nanofillers into glass fibre reinforcement is a promising strategy to improve the properties of the composite materials. The study aims to investigate the properties of hybrid nanocomposites consisting of multi-walled carbon nanotube (MWCNT)/woven glass/epoxy composites. The effect of different fabrication methods and different types of epoxy matrices was also investigated. For method 1, MWCNT was mixed with epoxy and impregnated into 3-ply woven glass fabrics using the hand lay-up method, followed by a vacuum bagging process. Meanwhile, for method 2, the woven glass fabrics were spray coated with MWCNT aqueous suspension and 3-ply woven glass fabrics were stacked together and impregnated with epoxy using the hand lay-up method followed by vacuum bagging. Results showed that composite laminates prepared by method 2 with 0.5 wt% MWCNT exhibit higher impact and flexural strength with 32.9% and 29% increments compared to method 1, respectively. Based on the flammability test, it was observed that hybrid laminate composites fabricated by both methods could self-extinguish. It was found that hybrid laminated composites using bisphenol A as an epoxy matrix show higher impact strength and flexural strength with 20.7% and 12% increments compared to epoxy bio-resins, respectively.\",\"PeriodicalId\":16943,\"journal\":{\"name\":\"Journal of Reinforced Plastics and Composites\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Reinforced Plastics and Composites\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/07316844241252321\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Reinforced Plastics and Composites","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/07316844241252321","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Multi-walled carbon nanotubes/woven glass/epoxy hybrid nanocomposites: Effect of fabrication methods and types of epoxy matrices
The hybridization of nanofillers into glass fibre reinforcement is a promising strategy to improve the properties of the composite materials. The study aims to investigate the properties of hybrid nanocomposites consisting of multi-walled carbon nanotube (MWCNT)/woven glass/epoxy composites. The effect of different fabrication methods and different types of epoxy matrices was also investigated. For method 1, MWCNT was mixed with epoxy and impregnated into 3-ply woven glass fabrics using the hand lay-up method, followed by a vacuum bagging process. Meanwhile, for method 2, the woven glass fabrics were spray coated with MWCNT aqueous suspension and 3-ply woven glass fabrics were stacked together and impregnated with epoxy using the hand lay-up method followed by vacuum bagging. Results showed that composite laminates prepared by method 2 with 0.5 wt% MWCNT exhibit higher impact and flexural strength with 32.9% and 29% increments compared to method 1, respectively. Based on the flammability test, it was observed that hybrid laminate composites fabricated by both methods could self-extinguish. It was found that hybrid laminated composites using bisphenol A as an epoxy matrix show higher impact strength and flexural strength with 20.7% and 12% increments compared to epoxy bio-resins, respectively.
期刊介绍:
The Journal of Reinforced Plastics and Composites is a fully peer-reviewed international journal that publishes original research and review articles on a broad range of today''s reinforced plastics and composites including areas in:
Constituent materials: matrix materials, reinforcements and coatings.
Properties and performance: The results of testing, predictive models, and in-service evaluation of a wide range of materials are published, providing the reader with extensive properties data for reference.
Analysis and design: Frequency reports on these subjects inform the reader of analytical techniques, design processes and the many design options available in materials composition.
Processing and fabrication: There is increased interest among materials engineers in cost-effective processing.
Applications: Reports on new materials R&D are often related to the service requirements of specific application areas, such as automotive, marine, construction and aviation.
Reports on special topics are regularly included such as recycling, environmental effects, novel materials, computer-aided design, predictive modelling, and "smart" composite materials.
"The articles in the Journal of Reinforced Plastics and Products are must reading for engineers in industry and for researchers working on leading edge problems" Professor Emeritus Stephen W Tsai National Sun Yat-sen University, Taiwan
This journal is a member of the Committee on Publication Ethics (COPE).