基于非连续伽勒金时间离散化的波方程唯一续集

Erik Burman, Janosch Preuss
{"title":"基于非连续伽勒金时间离散化的波方程唯一续集","authors":"Erik Burman, Janosch Preuss","doi":"arxiv-2405.04615","DOIUrl":null,"url":null,"abstract":"We consider a stable unique continuation problem for the wave equation where\nthe initial data is lacking and the solution is reconstructed using\nmeasurements in some subset of the bulk domain. Typically fairly sophisticated\nspace-time methods have been used in previous work to obtain stable and\naccurate solutions to this reconstruction problem. Here we propose to solve the\nproblem using a standard discontinuous Galerkin method for the temporal\ndiscretization and continuous finite elements for the space discretization.\nError estimates are established under a geometric control condition. We also\ninvestigate two preconditioning strategies which can be used to solve the\narising globally coupled space-time system by means of simple time-stepping\nprocedures. Our numerical experiments test the performance of these strategies\nand highlight the importance of the geometric control condition for\nreconstructing the solution beyond the data domain.","PeriodicalId":501061,"journal":{"name":"arXiv - CS - Numerical Analysis","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unique continuation for the wave equation based on a discontinuous Galerkin time discretization\",\"authors\":\"Erik Burman, Janosch Preuss\",\"doi\":\"arxiv-2405.04615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a stable unique continuation problem for the wave equation where\\nthe initial data is lacking and the solution is reconstructed using\\nmeasurements in some subset of the bulk domain. Typically fairly sophisticated\\nspace-time methods have been used in previous work to obtain stable and\\naccurate solutions to this reconstruction problem. Here we propose to solve the\\nproblem using a standard discontinuous Galerkin method for the temporal\\ndiscretization and continuous finite elements for the space discretization.\\nError estimates are established under a geometric control condition. We also\\ninvestigate two preconditioning strategies which can be used to solve the\\narising globally coupled space-time system by means of simple time-stepping\\nprocedures. Our numerical experiments test the performance of these strategies\\nand highlight the importance of the geometric control condition for\\nreconstructing the solution beyond the data domain.\",\"PeriodicalId\":501061,\"journal\":{\"name\":\"arXiv - CS - Numerical Analysis\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.04615\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.04615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的是波方程的稳定唯一续问题,在这一问题中,初始数据缺乏,而解则是通过在体域的某些子集上进行测量来重建的。在以前的工作中,通常使用相当复杂的时空方法来获得这个重构问题的稳定而精确的解。在这里,我们建议使用标准的非连续 Galerkin 方法进行时间离散化,使用连续有限元进行空间离散化来解决这个问题。我们还研究了两种预处理策略,可用于通过简单的时间步进程序求解正在形成的全局耦合时空系统。我们的数值实验检验了这些策略的性能,并强调了几何控制条件对于在数据域之外重建解的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unique continuation for the wave equation based on a discontinuous Galerkin time discretization
We consider a stable unique continuation problem for the wave equation where the initial data is lacking and the solution is reconstructed using measurements in some subset of the bulk domain. Typically fairly sophisticated space-time methods have been used in previous work to obtain stable and accurate solutions to this reconstruction problem. Here we propose to solve the problem using a standard discontinuous Galerkin method for the temporal discretization and continuous finite elements for the space discretization. Error estimates are established under a geometric control condition. We also investigate two preconditioning strategies which can be used to solve the arising globally coupled space-time system by means of simple time-stepping procedures. Our numerical experiments test the performance of these strategies and highlight the importance of the geometric control condition for reconstructing the solution beyond the data domain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信