弗拉索夫方程的修正劳森方法

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Benjamin Boutin, Anaïs Crestetto, Nicolas Crouseilles, Josselin Massot
{"title":"弗拉索夫方程的修正劳森方法","authors":"Benjamin Boutin, Anaïs Crestetto, Nicolas Crouseilles, Josselin Massot","doi":"10.1137/22m154301x","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Scientific Computing, Volume 46, Issue 3, Page A1574-A1598, June 2024. <br/>Abstract. In this work, Lawson type numerical methods are studied to solve Vlasov type equations on a phase space grid. These time integrators are known to satisfy enhanced stability properties in this context since they do not suffer from the stability condition induced from the linear part. We introduce here a class of modified Lawson integrators in which the linear part is approximated in such a way that some geometric properties of the underlying model are preserved, which has important consequences for the analysis of the scheme. Several Vlasov–Maxwell examples are presented to illustrate the good behavior of the approach.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modified Lawson Methods for Vlasov Equations\",\"authors\":\"Benjamin Boutin, Anaïs Crestetto, Nicolas Crouseilles, Josselin Massot\",\"doi\":\"10.1137/22m154301x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Scientific Computing, Volume 46, Issue 3, Page A1574-A1598, June 2024. <br/>Abstract. In this work, Lawson type numerical methods are studied to solve Vlasov type equations on a phase space grid. These time integrators are known to satisfy enhanced stability properties in this context since they do not suffer from the stability condition induced from the linear part. We introduce here a class of modified Lawson integrators in which the linear part is approximated in such a way that some geometric properties of the underlying model are preserved, which has important consequences for the analysis of the scheme. Several Vlasov–Maxwell examples are presented to illustrate the good behavior of the approach.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/22m154301x\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m154301x","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 科学计算期刊》,第 46 卷第 3 期,第 A1574-A1598 页,2024 年 6 月。摘要本文研究了求解相空间网格上 Vlasov 型方程的 Lawson 型数值方法。众所周知,这些时间积分器在这种情况下满足增强的稳定性能,因为它们不受线性部分引起的稳定性条件的影响。我们在此介绍一类修正的 Lawson 积分器,其中线性部分的近似方式保留了基础模型的某些几何特性,这对方案分析具有重要影响。我们列举了几个 Vlasov-Maxwell 例子来说明这种方法的良好性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modified Lawson Methods for Vlasov Equations
SIAM Journal on Scientific Computing, Volume 46, Issue 3, Page A1574-A1598, June 2024.
Abstract. In this work, Lawson type numerical methods are studied to solve Vlasov type equations on a phase space grid. These time integrators are known to satisfy enhanced stability properties in this context since they do not suffer from the stability condition induced from the linear part. We introduce here a class of modified Lawson integrators in which the linear part is approximated in such a way that some geometric properties of the underlying model are preserved, which has important consequences for the analysis of the scheme. Several Vlasov–Maxwell examples are presented to illustrate the good behavior of the approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信