斯托克斯和广义斯托克斯问题的无矩阵整体多网格方法

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Daniel Jodlbauer, Ulrich Langer, Thomas Wick, Walter Zulehner
{"title":"斯托克斯和广义斯托克斯问题的无矩阵整体多网格方法","authors":"Daniel Jodlbauer, Ulrich Langer, Thomas Wick, Walter Zulehner","doi":"10.1137/22m1504184","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Scientific Computing, Volume 46, Issue 3, Page A1599-A1627, June 2024. <br/> Abstract. We consider the widely used continuous [math]-[math] quadrilateral or hexahedral Taylor–Hood elements for the finite element discretization of the Stokes and generalized Stokes systems in two and three spatial dimensions. For the fast solution of the corresponding symmetric, but indefinite system of finite element equations, we propose and analyze matrix-free monolithic geometric multigrid solvers that are based on appropriately scaled Chebyshev–Jacobi smoothers. The analysis is based on results by Schöberl and Zulehner (2003). We present and discuss several numerical results for typical benchmark problems.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Matrix-Free Monolithic Multigrid Methods for Stokes and Generalized Stokes Problems\",\"authors\":\"Daniel Jodlbauer, Ulrich Langer, Thomas Wick, Walter Zulehner\",\"doi\":\"10.1137/22m1504184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Scientific Computing, Volume 46, Issue 3, Page A1599-A1627, June 2024. <br/> Abstract. We consider the widely used continuous [math]-[math] quadrilateral or hexahedral Taylor–Hood elements for the finite element discretization of the Stokes and generalized Stokes systems in two and three spatial dimensions. For the fast solution of the corresponding symmetric, but indefinite system of finite element equations, we propose and analyze matrix-free monolithic geometric multigrid solvers that are based on appropriately scaled Chebyshev–Jacobi smoothers. The analysis is based on results by Schöberl and Zulehner (2003). We present and discuss several numerical results for typical benchmark problems.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1504184\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1504184","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 科学计算期刊》,第 46 卷第 3 期,第 A1599-A1627 页,2024 年 6 月。 摘要。我们考虑将广泛使用的连续[math]-[math]四边形或六面体 Taylor-Hood 元素用于二维和三维斯托克斯和广义斯托克斯系统的有限元离散化。为了快速求解相应的对称但不确定的有限元方程组,我们提出并分析了基于适当比例的切比雪夫-雅可比平滑器的无矩阵单片几何多网格求解器。分析以 Schöberl 和 Zulehner (2003) 的结果为基础。我们介绍并讨论了几个典型基准问题的数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Matrix-Free Monolithic Multigrid Methods for Stokes and Generalized Stokes Problems
SIAM Journal on Scientific Computing, Volume 46, Issue 3, Page A1599-A1627, June 2024.
Abstract. We consider the widely used continuous [math]-[math] quadrilateral or hexahedral Taylor–Hood elements for the finite element discretization of the Stokes and generalized Stokes systems in two and three spatial dimensions. For the fast solution of the corresponding symmetric, but indefinite system of finite element equations, we propose and analyze matrix-free monolithic geometric multigrid solvers that are based on appropriately scaled Chebyshev–Jacobi smoothers. The analysis is based on results by Schöberl and Zulehner (2003). We present and discuss several numerical results for typical benchmark problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信