通过解析算子实现二阶半线性整微分系统的最优控制结果

Anugrah Pratap Singh, Udaya Pratap Singh, Anurag Shukla
{"title":"通过解析算子实现二阶半线性整微分系统的最优控制结果","authors":"Anugrah Pratap Singh, Udaya Pratap Singh, Anurag Shukla","doi":"10.1002/oca.3138","DOIUrl":null,"url":null,"abstract":"In the framework of a second‐order semilinear integro‐differential control system in Hilbert spaces, the paper provides sufficient conditions for proving the existence of optimal control. The Banach fixed point theorem is used to investigate the existence and uniqueness of mild solutions for the proposed problem. Additionally, it is shown that, under specific assumptions, there exists at least one optimal control pair for the Lagrange's problem as presented in the article. An example for validation is included in the paper to further support the theoretical findings.","PeriodicalId":501055,"journal":{"name":"Optimal Control Applications and Methods","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal control results for second‐order semilinear integro‐differential systems via resolvent operators\",\"authors\":\"Anugrah Pratap Singh, Udaya Pratap Singh, Anurag Shukla\",\"doi\":\"10.1002/oca.3138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the framework of a second‐order semilinear integro‐differential control system in Hilbert spaces, the paper provides sufficient conditions for proving the existence of optimal control. The Banach fixed point theorem is used to investigate the existence and uniqueness of mild solutions for the proposed problem. Additionally, it is shown that, under specific assumptions, there exists at least one optimal control pair for the Lagrange's problem as presented in the article. An example for validation is included in the paper to further support the theoretical findings.\",\"PeriodicalId\":501055,\"journal\":{\"name\":\"Optimal Control Applications and Methods\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimal Control Applications and Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/oca.3138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimal Control Applications and Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/oca.3138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在希尔伯特空间二阶半线性整微分控制系统的框架内,本文提供了证明最优控制存在的充分条件。利用巴拿赫定点定理研究了所提问题的温和解的存在性和唯一性。此外,文章还证明,在特定假设条件下,文章中提出的拉格朗日问题至少存在一个最优控制对。文中还提供了一个验证实例,以进一步支持理论结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal control results for second‐order semilinear integro‐differential systems via resolvent operators
In the framework of a second‐order semilinear integro‐differential control system in Hilbert spaces, the paper provides sufficient conditions for proving the existence of optimal control. The Banach fixed point theorem is used to investigate the existence and uniqueness of mild solutions for the proposed problem. Additionally, it is shown that, under specific assumptions, there exists at least one optimal control pair for the Lagrange's problem as presented in the article. An example for validation is included in the paper to further support the theoretical findings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信