金融监管解释中的大语言模型

Zhiyu Cao, Zachary Feinstein
{"title":"金融监管解释中的大语言模型","authors":"Zhiyu Cao, Zachary Feinstein","doi":"arxiv-2405.06808","DOIUrl":null,"url":null,"abstract":"This study explores the innovative use of Large Language Models (LLMs) as\nanalytical tools for interpreting complex financial regulations. The primary\nobjective is to design effective prompts that guide LLMs in distilling verbose\nand intricate regulatory texts, such as the Basel III capital requirement\nregulations, into a concise mathematical framework that can be subsequently\ntranslated into actionable code. This novel approach aims to streamline the\nimplementation of regulatory mandates within the financial reporting and risk\nmanagement systems of global banking institutions. A case study was conducted\nto assess the performance of various LLMs, demonstrating that GPT-4 outperforms\nother models in processing and collecting necessary information, as well as\nexecuting mathematical calculations. The case study utilized numerical\nsimulations with asset holdings -- including fixed income, equities, currency\npairs, and commodities -- to demonstrate how LLMs can effectively implement the\nBasel III capital adequacy requirements.","PeriodicalId":501128,"journal":{"name":"arXiv - QuantFin - Risk Management","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large Language Model in Financial Regulatory Interpretation\",\"authors\":\"Zhiyu Cao, Zachary Feinstein\",\"doi\":\"arxiv-2405.06808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study explores the innovative use of Large Language Models (LLMs) as\\nanalytical tools for interpreting complex financial regulations. The primary\\nobjective is to design effective prompts that guide LLMs in distilling verbose\\nand intricate regulatory texts, such as the Basel III capital requirement\\nregulations, into a concise mathematical framework that can be subsequently\\ntranslated into actionable code. This novel approach aims to streamline the\\nimplementation of regulatory mandates within the financial reporting and risk\\nmanagement systems of global banking institutions. A case study was conducted\\nto assess the performance of various LLMs, demonstrating that GPT-4 outperforms\\nother models in processing and collecting necessary information, as well as\\nexecuting mathematical calculations. The case study utilized numerical\\nsimulations with asset holdings -- including fixed income, equities, currency\\npairs, and commodities -- to demonstrate how LLMs can effectively implement the\\nBasel III capital adequacy requirements.\",\"PeriodicalId\":501128,\"journal\":{\"name\":\"arXiv - QuantFin - Risk Management\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Risk Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.06808\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Risk Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.06808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了如何创新性地使用大型语言模型(LLMs)作为分析工具来解释复杂的金融法规。主要目的是设计有效的提示,引导大型语言模型将冗长复杂的监管文本(如《巴塞尔协议 III》的资本要求规定)提炼为简明的数学框架,并随后翻译为可操作的代码。这种新方法旨在简化全球银行机构财务报告和风险管理系统中监管任务的执行。我们进行了一项案例研究,以评估各种 LLM 的性能,结果表明 GPT-4 在处理和收集必要信息以及执行数学计算方面优于其他模型。该案例研究利用资产持有量(包括固定收益、股票、货币对和商品)进行数字模拟,以展示 LLM 如何有效执行巴塞尔 III 资本充足率要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large Language Model in Financial Regulatory Interpretation
This study explores the innovative use of Large Language Models (LLMs) as analytical tools for interpreting complex financial regulations. The primary objective is to design effective prompts that guide LLMs in distilling verbose and intricate regulatory texts, such as the Basel III capital requirement regulations, into a concise mathematical framework that can be subsequently translated into actionable code. This novel approach aims to streamline the implementation of regulatory mandates within the financial reporting and risk management systems of global banking institutions. A case study was conducted to assess the performance of various LLMs, demonstrating that GPT-4 outperforms other models in processing and collecting necessary information, as well as executing mathematical calculations. The case study utilized numerical simulations with asset holdings -- including fixed income, equities, currency pairs, and commodities -- to demonstrate how LLMs can effectively implement the Basel III capital adequacy requirements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信