用概率不透明和透明规划:不透明/透明观测的计算模型

Sumukha Udupa, Jie Fu
{"title":"用概率不透明和透明规划:不透明/透明观测的计算模型","authors":"Sumukha Udupa, Jie Fu","doi":"arxiv-2405.05408","DOIUrl":null,"url":null,"abstract":"Qualitative opacity of a secret is a security property, which means that a\nsystem trajectory satisfying the secret is observation-equivalent to a\ntrajectory violating the secret. In this paper, we study how to synthesize a\ncontrol policy that maximizes the probability of a secret being made opaque\nagainst an eavesdropping attacker/observer, while subject to other task\nperformance constraints. In contrast to existing belief-based approach for\nopacity-enforcement, we develop an approach that uses the observation function,\nthe secret, and the model of the dynamical systems to construct a so-called\nopaque-observations automaton which accepts the exact set of observations that\nenforce opacity. Leveraging this opaque-observations automaton, we can reduce\nthe optimal planning in Markov decision processes(MDPs) for maximizing\nprobabilistic opacity or its dual notion, transparency, subject to task\nconstraints into a constrained planning problem over an augmented-state MDP.\nFinally, we illustrate the effectiveness of the developed methods in robot\nmotion planning problems with opacity or transparency requirements.","PeriodicalId":501124,"journal":{"name":"arXiv - CS - Formal Languages and Automata Theory","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Planning with Probabilistic Opacity and Transparency: A Computational Model of Opaque/Transparent Observations\",\"authors\":\"Sumukha Udupa, Jie Fu\",\"doi\":\"arxiv-2405.05408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Qualitative opacity of a secret is a security property, which means that a\\nsystem trajectory satisfying the secret is observation-equivalent to a\\ntrajectory violating the secret. In this paper, we study how to synthesize a\\ncontrol policy that maximizes the probability of a secret being made opaque\\nagainst an eavesdropping attacker/observer, while subject to other task\\nperformance constraints. In contrast to existing belief-based approach for\\nopacity-enforcement, we develop an approach that uses the observation function,\\nthe secret, and the model of the dynamical systems to construct a so-called\\nopaque-observations automaton which accepts the exact set of observations that\\nenforce opacity. Leveraging this opaque-observations automaton, we can reduce\\nthe optimal planning in Markov decision processes(MDPs) for maximizing\\nprobabilistic opacity or its dual notion, transparency, subject to task\\nconstraints into a constrained planning problem over an augmented-state MDP.\\nFinally, we illustrate the effectiveness of the developed methods in robot\\nmotion planning problems with opacity or transparency requirements.\",\"PeriodicalId\":501124,\"journal\":{\"name\":\"arXiv - CS - Formal Languages and Automata Theory\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Formal Languages and Automata Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.05408\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Formal Languages and Automata Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.05408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

秘密的定性不透明性是一种安全属性,它意味着满足该秘密的系统轨迹与违反该秘密的轨迹具有观测等效性。在本文中,我们研究了如何综合出一种控制策略,在遵守其他任务性能约束的前提下,最大限度地提高秘密在窃听攻击者/观察者面前不透明的概率。与现有的基于信念的不透明强制方法不同,我们开发了一种方法,利用观测函数、秘密和动态系统模型来构建所谓的不透明观测自动机,该自动机接受强制不透明的精确观测集合。利用这种不透明观测自动机,我们可以将马尔可夫决策过程(MDP)中最大化概率不透明性或其对偶概念透明度的最优规划,在任务约束条件下简化为增强状态 MDP 上的受限规划问题。最后,我们说明了所开发方法在具有不透明或透明度要求的机器人运动规划问题中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Planning with Probabilistic Opacity and Transparency: A Computational Model of Opaque/Transparent Observations
Qualitative opacity of a secret is a security property, which means that a system trajectory satisfying the secret is observation-equivalent to a trajectory violating the secret. In this paper, we study how to synthesize a control policy that maximizes the probability of a secret being made opaque against an eavesdropping attacker/observer, while subject to other task performance constraints. In contrast to existing belief-based approach for opacity-enforcement, we develop an approach that uses the observation function, the secret, and the model of the dynamical systems to construct a so-called opaque-observations automaton which accepts the exact set of observations that enforce opacity. Leveraging this opaque-observations automaton, we can reduce the optimal planning in Markov decision processes(MDPs) for maximizing probabilistic opacity or its dual notion, transparency, subject to task constraints into a constrained planning problem over an augmented-state MDP. Finally, we illustrate the effectiveness of the developed methods in robot motion planning problems with opacity or transparency requirements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信