参数驱动阻尼非线性薛定谔方程中孤子束缚态的精细结构

M. M. Bogdan, O. V. Charkina
{"title":"参数驱动阻尼非线性薛定谔方程中孤子束缚态的精细结构","authors":"M. M. Bogdan, O. V. Charkina","doi":"arxiv-2405.06987","DOIUrl":null,"url":null,"abstract":"Static soliton bound states in nonlinear systems are investigated\nanalytically and numerically in the framework of the parametrically driven,\ndamped nonlinear Schr\\\"odinger equation. We find that the ordinary differential\nequations, which determine bound soliton solutions, can be transformed into the\nform resembling the Schr\\\"odinger-like equations for eigenfunctions with the\nfixed eigenvalues. We assume that a nonlinear part of the equations is close to\nthe reflectionless potential well occurring in the scattering problem,\nassociated with the integrable equations. We show that symmetric two-hump\nsoliton solution is quite well described analytically by the three-soliton\nformula with the fixed soliton parameters, depending on the strength of\nparametric pumping and the dissipation constant.","PeriodicalId":501370,"journal":{"name":"arXiv - PHYS - Pattern Formation and Solitons","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fine structure of soliton bound states in the parametrically driven, damped nonlinear Schrödinger equation\",\"authors\":\"M. M. Bogdan, O. V. Charkina\",\"doi\":\"arxiv-2405.06987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Static soliton bound states in nonlinear systems are investigated\\nanalytically and numerically in the framework of the parametrically driven,\\ndamped nonlinear Schr\\\\\\\"odinger equation. We find that the ordinary differential\\nequations, which determine bound soliton solutions, can be transformed into the\\nform resembling the Schr\\\\\\\"odinger-like equations for eigenfunctions with the\\nfixed eigenvalues. We assume that a nonlinear part of the equations is close to\\nthe reflectionless potential well occurring in the scattering problem,\\nassociated with the integrable equations. We show that symmetric two-hump\\nsoliton solution is quite well described analytically by the three-soliton\\nformula with the fixed soliton parameters, depending on the strength of\\nparametric pumping and the dissipation constant.\",\"PeriodicalId\":501370,\"journal\":{\"name\":\"arXiv - PHYS - Pattern Formation and Solitons\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Pattern Formation and Solitons\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.06987\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Pattern Formation and Solitons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.06987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在参数驱动、阻尼非线性薛定谔方程的框架内,对非线性系统中的静态孤子束缚态进行了分析和数值研究。我们发现,决定孤子束缚解的常微分方程可以转化为类似于具有固定特征值的特征函数的薛定谔方程的形式。我们假设方程的非线性部分接近散射问题中出现的无反射势阱,与可积分方程相关。我们证明,对称双驼峰孤子解可以很好地用具有固定孤子参数的三孤子公式来分析描述,这取决于参数泵浦强度和耗散常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fine structure of soliton bound states in the parametrically driven, damped nonlinear Schrödinger equation
Static soliton bound states in nonlinear systems are investigated analytically and numerically in the framework of the parametrically driven, damped nonlinear Schr\"odinger equation. We find that the ordinary differential equations, which determine bound soliton solutions, can be transformed into the form resembling the Schr\"odinger-like equations for eigenfunctions with the fixed eigenvalues. We assume that a nonlinear part of the equations is close to the reflectionless potential well occurring in the scattering problem, associated with the integrable equations. We show that symmetric two-hump soliton solution is quite well described analytically by the three-soliton formula with the fixed soliton parameters, depending on the strength of parametric pumping and the dissipation constant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信