非赫米提拓扑晶格中的不敏感边缘孤子

Bertin Many Manda, Vassos Achilleos
{"title":"非赫米提拓扑晶格中的不敏感边缘孤子","authors":"Bertin Many Manda, Vassos Achilleos","doi":"arxiv-2405.05441","DOIUrl":null,"url":null,"abstract":"In this work, we demonstrate that the synergetic interplay of topology,\nnonreciprocity and nonlinearity is capable of unprecedented effects. We focus\non a nonreciprocal variant of the Su-Shrieffer-Heeger chain with local Kerr\nnonlinearity. We find a continuous family of non-reciprocal edge solitons\n(NESs) emerging from the topological edge mode, with near-zero energy, in great\ncontrast from their reciprocal counterparts. Analytical results show that this\nenergy decays exponentially towards zero when increasing the lattice size.\nConsequently, despite the absence of chiral symmetry within the system, we\nobtain zero-energy NESs, which are insensitive to growing Kerr nonlinearity.\nEven more surprising, these zero-energy NESs also persist in the strong\nnonlinear limit. Our work may enable new avenues for the control of nonlinear\ntopological waves without requiring the addition of complex chiral-preserving\nnonlinearities.","PeriodicalId":501370,"journal":{"name":"arXiv - PHYS - Pattern Formation and Solitons","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insensitive edge solitons in non-Hermitian topological lattices\",\"authors\":\"Bertin Many Manda, Vassos Achilleos\",\"doi\":\"arxiv-2405.05441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we demonstrate that the synergetic interplay of topology,\\nnonreciprocity and nonlinearity is capable of unprecedented effects. We focus\\non a nonreciprocal variant of the Su-Shrieffer-Heeger chain with local Kerr\\nnonlinearity. We find a continuous family of non-reciprocal edge solitons\\n(NESs) emerging from the topological edge mode, with near-zero energy, in great\\ncontrast from their reciprocal counterparts. Analytical results show that this\\nenergy decays exponentially towards zero when increasing the lattice size.\\nConsequently, despite the absence of chiral symmetry within the system, we\\nobtain zero-energy NESs, which are insensitive to growing Kerr nonlinearity.\\nEven more surprising, these zero-energy NESs also persist in the strong\\nnonlinear limit. Our work may enable new avenues for the control of nonlinear\\ntopological waves without requiring the addition of complex chiral-preserving\\nnonlinearities.\",\"PeriodicalId\":501370,\"journal\":{\"name\":\"arXiv - PHYS - Pattern Formation and Solitons\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Pattern Formation and Solitons\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.05441\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Pattern Formation and Solitons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.05441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们证明拓扑、非互惠性和非线性的协同作用能够产生前所未有的效果。我们重点研究了具有局部凯尔年线性的 Su-Shrieffer-Heeger 链的非互惠变体。我们发现拓扑边缘模式产生的非互惠边缘孤子(NESs)是一个连续的家族,其能量接近于零,与互惠边缘孤子形成了鲜明对比。分析结果表明,当晶格尺寸增大时,这种能量会以指数形式向零衰减。因此,尽管系统内不存在手性对称,我们还是获得了零能量 NES,它们对不断增长的克尔非线性不敏感。我们的工作可能会为控制非线性拓扑波提供新的途径,而无需添加复杂的手性保留非线性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Insensitive edge solitons in non-Hermitian topological lattices
In this work, we demonstrate that the synergetic interplay of topology, nonreciprocity and nonlinearity is capable of unprecedented effects. We focus on a nonreciprocal variant of the Su-Shrieffer-Heeger chain with local Kerr nonlinearity. We find a continuous family of non-reciprocal edge solitons (NESs) emerging from the topological edge mode, with near-zero energy, in great contrast from their reciprocal counterparts. Analytical results show that this energy decays exponentially towards zero when increasing the lattice size. Consequently, despite the absence of chiral symmetry within the system, we obtain zero-energy NESs, which are insensitive to growing Kerr nonlinearity. Even more surprising, these zero-energy NESs also persist in the strong nonlinear limit. Our work may enable new avenues for the control of nonlinear topological waves without requiring the addition of complex chiral-preserving nonlinearities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信