J. Chandra Priya, R. Praveen, K. Nivitha, T. Sudhakar
{"title":"基于区块链的用户认证协议与环签名的改进,适用于医疗物联网","authors":"J. Chandra Priya, R. Praveen, K. Nivitha, T. Sudhakar","doi":"10.1007/s12083-024-01716-9","DOIUrl":null,"url":null,"abstract":"<p>In the field of e-healthcare, smart medical sensors are responsible for consistently collecting, transmitting, and communicating real-time data to support immediate decision-making, both within and between healthcare organizations. Privacy-preserving authentication is required, even when the sensors roam between different networks. Existing authentication protocols rely on centralized authentication servers and pose a number of challenges, including a single point of failure, performance bottlenecks, scalability challenges, and privacy concerns. Hence, a secure mutual authentication mechanism using Blockchain is essential in preventing attacks. In this paper, an Improved Chain Code Blockchain-based Key Agreement Authentication Mechanism (CCBKAAM) using the merits of SM9-based Secure Threshold Ring Signature (SM9-STRS) is proposed for achieving privacy and security. This proposed mechanism uses multiple key generation-based cipher identification algorithms for parameter maintenance. The integrated threshold ring signature prevents the limitations of the single key generation scheme. It uses Chain Codes over the Ethereum network for constructing the blocks during the process of mutual user authentication with trust equity score-based Improved PBFT Voting protocol for reaching consensus during authentication. This authentication protocol adopted blockchain for the objective of storing the identities and associated parameters to support the entities under communication during the process of authentication. The formal and informal verification of the proposed CCBKAAM confirmed its potentiality in resisting most of the possible attacks the IoMT is vulnerable to. The communication and computation overhead during the implementation are determined to be significantly lowered by 32.19% and 28.94%, better than the compared baseline blockchain-based mutual authentication. The performance analysis proved that this proposed CCBKAAM scheme is also potent in minimizing the storage overhead up to maximized level of 35.42%.</p>","PeriodicalId":49313,"journal":{"name":"Peer-To-Peer Networking and Applications","volume":"47 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved blockchain-based user authentication protocol with ring signature for internet of medical things\",\"authors\":\"J. Chandra Priya, R. Praveen, K. Nivitha, T. Sudhakar\",\"doi\":\"10.1007/s12083-024-01716-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the field of e-healthcare, smart medical sensors are responsible for consistently collecting, transmitting, and communicating real-time data to support immediate decision-making, both within and between healthcare organizations. Privacy-preserving authentication is required, even when the sensors roam between different networks. Existing authentication protocols rely on centralized authentication servers and pose a number of challenges, including a single point of failure, performance bottlenecks, scalability challenges, and privacy concerns. Hence, a secure mutual authentication mechanism using Blockchain is essential in preventing attacks. In this paper, an Improved Chain Code Blockchain-based Key Agreement Authentication Mechanism (CCBKAAM) using the merits of SM9-based Secure Threshold Ring Signature (SM9-STRS) is proposed for achieving privacy and security. This proposed mechanism uses multiple key generation-based cipher identification algorithms for parameter maintenance. The integrated threshold ring signature prevents the limitations of the single key generation scheme. It uses Chain Codes over the Ethereum network for constructing the blocks during the process of mutual user authentication with trust equity score-based Improved PBFT Voting protocol for reaching consensus during authentication. This authentication protocol adopted blockchain for the objective of storing the identities and associated parameters to support the entities under communication during the process of authentication. The formal and informal verification of the proposed CCBKAAM confirmed its potentiality in resisting most of the possible attacks the IoMT is vulnerable to. The communication and computation overhead during the implementation are determined to be significantly lowered by 32.19% and 28.94%, better than the compared baseline blockchain-based mutual authentication. The performance analysis proved that this proposed CCBKAAM scheme is also potent in minimizing the storage overhead up to maximized level of 35.42%.</p>\",\"PeriodicalId\":49313,\"journal\":{\"name\":\"Peer-To-Peer Networking and Applications\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Peer-To-Peer Networking and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s12083-024-01716-9\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Peer-To-Peer Networking and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12083-024-01716-9","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Improved blockchain-based user authentication protocol with ring signature for internet of medical things
In the field of e-healthcare, smart medical sensors are responsible for consistently collecting, transmitting, and communicating real-time data to support immediate decision-making, both within and between healthcare organizations. Privacy-preserving authentication is required, even when the sensors roam between different networks. Existing authentication protocols rely on centralized authentication servers and pose a number of challenges, including a single point of failure, performance bottlenecks, scalability challenges, and privacy concerns. Hence, a secure mutual authentication mechanism using Blockchain is essential in preventing attacks. In this paper, an Improved Chain Code Blockchain-based Key Agreement Authentication Mechanism (CCBKAAM) using the merits of SM9-based Secure Threshold Ring Signature (SM9-STRS) is proposed for achieving privacy and security. This proposed mechanism uses multiple key generation-based cipher identification algorithms for parameter maintenance. The integrated threshold ring signature prevents the limitations of the single key generation scheme. It uses Chain Codes over the Ethereum network for constructing the blocks during the process of mutual user authentication with trust equity score-based Improved PBFT Voting protocol for reaching consensus during authentication. This authentication protocol adopted blockchain for the objective of storing the identities and associated parameters to support the entities under communication during the process of authentication. The formal and informal verification of the proposed CCBKAAM confirmed its potentiality in resisting most of the possible attacks the IoMT is vulnerable to. The communication and computation overhead during the implementation are determined to be significantly lowered by 32.19% and 28.94%, better than the compared baseline blockchain-based mutual authentication. The performance analysis proved that this proposed CCBKAAM scheme is also potent in minimizing the storage overhead up to maximized level of 35.42%.
期刊介绍:
The aim of the Peer-to-Peer Networking and Applications journal is to disseminate state-of-the-art research and development results in this rapidly growing research area, to facilitate the deployment of P2P networking and applications, and to bring together the academic and industry communities, with the goal of fostering interaction to promote further research interests and activities, thus enabling new P2P applications and services. The journal not only addresses research topics related to networking and communications theory, but also considers the standardization, economic, and engineering aspects of P2P technologies, and their impacts on software engineering, computer engineering, networked communication, and security.
The journal serves as a forum for tackling the technical problems arising from both file sharing and media streaming applications. It also includes state-of-the-art technologies in the P2P security domain.
Peer-to-Peer Networking and Applications publishes regular papers, tutorials and review papers, case studies, and correspondence from the research, development, and standardization communities. Papers addressing system, application, and service issues are encouraged.