Dan Zhao, Yue Li, Jialin Zhang, Yang Liu, Mingze Sun, Xinjia Li, Zhan Yu, Ying Li, Sheng Yuan, Xin Zhou
{"title":"基于鬼影成像和类内类间差异的图像密码文本分类方法","authors":"Dan Zhao, Yue Li, Jialin Zhang, Yang Liu, Mingze Sun, Xinjia Li, Zhan Yu, Ying Li, Sheng Yuan, Xin Zhou","doi":"10.1088/1612-202x/ad45d8","DOIUrl":null,"url":null,"abstract":"In this paper, based on ghost imaging encryption, the preservation of Manhattan distance feature in ciphertext compared with plaintext is analyzed by utilizing the intraclass-interclass difference of image classification, and a classification method for image ciphertexts is proposed. After calculating Manhattan distance for both plaintexts and ciphertexts, respectively, the intraclass-interclass difference can be determined. The image that minimizes the intraclass-interclass difference is taken as the centroid to verify the consistency of the classification for various plaintext-ciphertext pairs under the same operation. The feasibility of proposed method is verified by numerical simulations, that the values of ACC and Weighted-<italic toggle=\"yes\">F</italic>2 can be up to 90% when the MNIST is adopted as the test dataset. The whole process can be regarded as a kind of classification process by homomorphic encryption, however, different from the traditional homomorphic encryption methods based on mathematical model, the proposed method is accomplished based on the optical theory, and it does not require a lot of pre-training through models such as deep learning and neural networks, that means, reducing the computational expenses.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Image ciphertexts classification method based on ghost imaging and intraclass-interclass difference\",\"authors\":\"Dan Zhao, Yue Li, Jialin Zhang, Yang Liu, Mingze Sun, Xinjia Li, Zhan Yu, Ying Li, Sheng Yuan, Xin Zhou\",\"doi\":\"10.1088/1612-202x/ad45d8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, based on ghost imaging encryption, the preservation of Manhattan distance feature in ciphertext compared with plaintext is analyzed by utilizing the intraclass-interclass difference of image classification, and a classification method for image ciphertexts is proposed. After calculating Manhattan distance for both plaintexts and ciphertexts, respectively, the intraclass-interclass difference can be determined. The image that minimizes the intraclass-interclass difference is taken as the centroid to verify the consistency of the classification for various plaintext-ciphertext pairs under the same operation. The feasibility of proposed method is verified by numerical simulations, that the values of ACC and Weighted-<italic toggle=\\\"yes\\\">F</italic>2 can be up to 90% when the MNIST is adopted as the test dataset. The whole process can be regarded as a kind of classification process by homomorphic encryption, however, different from the traditional homomorphic encryption methods based on mathematical model, the proposed method is accomplished based on the optical theory, and it does not require a lot of pre-training through models such as deep learning and neural networks, that means, reducing the computational expenses.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1612-202x/ad45d8\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1612-202x/ad45d8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Image ciphertexts classification method based on ghost imaging and intraclass-interclass difference
In this paper, based on ghost imaging encryption, the preservation of Manhattan distance feature in ciphertext compared with plaintext is analyzed by utilizing the intraclass-interclass difference of image classification, and a classification method for image ciphertexts is proposed. After calculating Manhattan distance for both plaintexts and ciphertexts, respectively, the intraclass-interclass difference can be determined. The image that minimizes the intraclass-interclass difference is taken as the centroid to verify the consistency of the classification for various plaintext-ciphertext pairs under the same operation. The feasibility of proposed method is verified by numerical simulations, that the values of ACC and Weighted-F2 can be up to 90% when the MNIST is adopted as the test dataset. The whole process can be regarded as a kind of classification process by homomorphic encryption, however, different from the traditional homomorphic encryption methods based on mathematical model, the proposed method is accomplished based on the optical theory, and it does not require a lot of pre-training through models such as deep learning and neural networks, that means, reducing the computational expenses.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.