SU2 中的混合并行离散邻接

Johannes Blühdorn, Pedro Gomes, Max Aehle, Nicolas R. Gauger
{"title":"SU2 中的混合并行离散邻接","authors":"Johannes Blühdorn, Pedro Gomes, Max Aehle, Nicolas R. Gauger","doi":"arxiv-2405.06056","DOIUrl":null,"url":null,"abstract":"The open-source multiphysics suite SU2 features discrete adjoints by means of\noperator overloading automatic differentiation (AD). While both primal and\ndiscrete adjoint solvers support MPI parallelism, hybrid parallelism using both\nMPI and OpenMP has only been introduced for the primal solvers so far. In this\nwork, we enable hybrid parallel discrete adjoint solvers. Coupling SU2 with\nOpDiLib, an add-on for operator overloading AD tools that extends AD to OpenMP\nparallelism, marks a key step in this endeavour. We identify the affected parts\nof SU2's advanced AD workflow and discuss the required changes and their\ntradeoffs. Detailed performance studies compare MPI parallel and hybrid\nparallel discrete adjoints in terms of memory and runtime and unveil key\nperformance characteristics. We showcase the effectiveness of performance\noptimizations and highlight perspectives for future improvements. At the same\ntime, this study demonstrates the applicability of OpDiLib in a large code base\nand its scalability on large test cases, providing valuable insights for future\napplications both within and beyond SU2.","PeriodicalId":501256,"journal":{"name":"arXiv - CS - Mathematical Software","volume":"208 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid Parallel Discrete Adjoints in SU2\",\"authors\":\"Johannes Blühdorn, Pedro Gomes, Max Aehle, Nicolas R. Gauger\",\"doi\":\"arxiv-2405.06056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The open-source multiphysics suite SU2 features discrete adjoints by means of\\noperator overloading automatic differentiation (AD). While both primal and\\ndiscrete adjoint solvers support MPI parallelism, hybrid parallelism using both\\nMPI and OpenMP has only been introduced for the primal solvers so far. In this\\nwork, we enable hybrid parallel discrete adjoint solvers. Coupling SU2 with\\nOpDiLib, an add-on for operator overloading AD tools that extends AD to OpenMP\\nparallelism, marks a key step in this endeavour. We identify the affected parts\\nof SU2's advanced AD workflow and discuss the required changes and their\\ntradeoffs. Detailed performance studies compare MPI parallel and hybrid\\nparallel discrete adjoints in terms of memory and runtime and unveil key\\nperformance characteristics. We showcase the effectiveness of performance\\noptimizations and highlight perspectives for future improvements. At the same\\ntime, this study demonstrates the applicability of OpDiLib in a large code base\\nand its scalability on large test cases, providing valuable insights for future\\napplications both within and beyond SU2.\",\"PeriodicalId\":501256,\"journal\":{\"name\":\"arXiv - CS - Mathematical Software\",\"volume\":\"208 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Mathematical Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.06056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Mathematical Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.06056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

开源多物理场套件 SU2 通过操作符重载自动微分(AD)技术实现了离散邻接。虽然基元求解器和离散邻接求解器都支持 MPI 并行,但使用 MPI 和 OpenMP 的混合并行迄今只在基元求解器中引入过。在这项工作中,我们启用了混合并行离散邻接求解器。将 SU2 与 OpDiLib(运算符重载 AD 工具的附加组件,可将 AD 扩展到 OpenMP 并行性)耦合是这一努力的关键一步。我们确定了 SU2 高级 AD 工作流程中受影响的部分,并讨论了所需的更改及其代价。详细的性能研究比较了内存和运行时间方面的 MPI 并行和混合并行离散邻接,并揭示了关键性能特征。我们展示了性能优化的有效性,并强调了未来改进的前景。同时,本研究还展示了 OpDiLib 在大型代码库中的适用性及其在大型测试案例中的可扩展性,为 SU2 内外的未来应用提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid Parallel Discrete Adjoints in SU2
The open-source multiphysics suite SU2 features discrete adjoints by means of operator overloading automatic differentiation (AD). While both primal and discrete adjoint solvers support MPI parallelism, hybrid parallelism using both MPI and OpenMP has only been introduced for the primal solvers so far. In this work, we enable hybrid parallel discrete adjoint solvers. Coupling SU2 with OpDiLib, an add-on for operator overloading AD tools that extends AD to OpenMP parallelism, marks a key step in this endeavour. We identify the affected parts of SU2's advanced AD workflow and discuss the required changes and their tradeoffs. Detailed performance studies compare MPI parallel and hybrid parallel discrete adjoints in terms of memory and runtime and unveil key performance characteristics. We showcase the effectiveness of performance optimizations and highlight perspectives for future improvements. At the same time, this study demonstrates the applicability of OpDiLib in a large code base and its scalability on large test cases, providing valuable insights for future applications both within and beyond SU2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信