旋转涡对附近有限致密惯性粒子的捕获和极端聚类

Saumav Kapoor, Divya Jaganathan, Rama Govindarajan
{"title":"旋转涡对附近有限致密惯性粒子的捕获和极端聚类","authors":"Saumav Kapoor, Divya Jaganathan, Rama Govindarajan","doi":"arxiv-2405.04949","DOIUrl":null,"url":null,"abstract":"Small heavy particles cannot get attracted into a region of closed\nstreamlines in a non-accelerating frame (Sapsis & Haller 2010). In a rotating\nsystem, however, particles can get trapped (Angilella 2010) near vortices. We\nperform numerical simulations examining trapping of inertial particles in a\nprototypical rotating flow: an identical pair of rotating Lamb-Oseen vortices,\nwithout gravity. Our parameter space includes the particle Stokes number $St$,\nmeasuring the particle's inertia, and a density parameter $R$, measuring the\nparticle-to-fluid relative density. We focus on inertial particles that are\nfinitely denser than the fluid. Particles can get indefinitely trapped near the\nvortices and display extreme clustering into smaller dimensional objects:\nattracting fixed-points, limit cycles and chaotic attractors. As $St$ increases\nfor a given $R$, we may have an incomplete or complete period-doubling route to\nchaos, as well as an unusual period-halving route back to a fixed-point\nattractor. The fraction of trapped particles can vary non-monotonically with\n$St$. We may even have windows in $St$ for which no particle trapping occurs.\nAt $St$ larger than a critical value, beyond no trapping occurs, significant\nfractions of particles can spend long but finite times in the vortex vicinity.\nThe inclusion of the Basset-Boussinesq history (BBH) force is imperative in our\nstudy due to particle's finite density. BBH force significantly increases the\nbasin of attraction as well as the range of $St$ where trapping can occur.\nExtreme clustering can be physically significant in planetesimal formation by\ndust aggregation in protoplanetary disks, phytoplankton aggregation in oceans,\netc.","PeriodicalId":501167,"journal":{"name":"arXiv - PHYS - Chaotic Dynamics","volume":"137 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trapping and extreme clustering of finitely-dense inertial particles near a rotating vortex pair\",\"authors\":\"Saumav Kapoor, Divya Jaganathan, Rama Govindarajan\",\"doi\":\"arxiv-2405.04949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Small heavy particles cannot get attracted into a region of closed\\nstreamlines in a non-accelerating frame (Sapsis & Haller 2010). In a rotating\\nsystem, however, particles can get trapped (Angilella 2010) near vortices. We\\nperform numerical simulations examining trapping of inertial particles in a\\nprototypical rotating flow: an identical pair of rotating Lamb-Oseen vortices,\\nwithout gravity. Our parameter space includes the particle Stokes number $St$,\\nmeasuring the particle's inertia, and a density parameter $R$, measuring the\\nparticle-to-fluid relative density. We focus on inertial particles that are\\nfinitely denser than the fluid. Particles can get indefinitely trapped near the\\nvortices and display extreme clustering into smaller dimensional objects:\\nattracting fixed-points, limit cycles and chaotic attractors. As $St$ increases\\nfor a given $R$, we may have an incomplete or complete period-doubling route to\\nchaos, as well as an unusual period-halving route back to a fixed-point\\nattractor. The fraction of trapped particles can vary non-monotonically with\\n$St$. We may even have windows in $St$ for which no particle trapping occurs.\\nAt $St$ larger than a critical value, beyond no trapping occurs, significant\\nfractions of particles can spend long but finite times in the vortex vicinity.\\nThe inclusion of the Basset-Boussinesq history (BBH) force is imperative in our\\nstudy due to particle's finite density. BBH force significantly increases the\\nbasin of attraction as well as the range of $St$ where trapping can occur.\\nExtreme clustering can be physically significant in planetesimal formation by\\ndust aggregation in protoplanetary disks, phytoplankton aggregation in oceans,\\netc.\",\"PeriodicalId\":501167,\"journal\":{\"name\":\"arXiv - PHYS - Chaotic Dynamics\",\"volume\":\"137 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Chaotic Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.04949\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Chaotic Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.04949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在非加速框架中,小的重粒子无法被吸引到闭合流线区域(Sapsis 和 Haller,2010 年)。然而,在旋转系统中,粒子可能会被困在旋涡附近(Angilella,2010 年)。我们进行了数值模拟,研究了惯性粒子在旋转原型旋转流(一对完全相同的无重力旋转 Lamb-Oseen 涡旋)中的捕获问题。我们的参数空间包括测量粒子惯性的粒子斯托克斯数 $St$ 和测量粒子与流体相对密度的密度参数 $R$。我们的重点是比流体密度大的惯性粒子。粒子会被无限地困在漩涡附近,并显示出极端的聚类现象,形成更小维度的物体:吸引定点、极限循环和混沌吸引子。在给定 R$ 的情况下,随着 St$ 的增加,我们可能会有一条不完全或完全的周期加倍路线通向混沌,以及一条不寻常的周期缩短路线回到定点吸引器。被困粒子的分数可能随$St$的变化而非单调变化。当 St$ 大于临界值时,在没有捕集的情况下,相当一部分粒子会在涡旋附近停留很长但有限的时间。由于原行星盘中的尘埃聚集、海洋中的浮游植物聚集等原因,极端聚集在行星形成过程中具有重要的物理意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Trapping and extreme clustering of finitely-dense inertial particles near a rotating vortex pair
Small heavy particles cannot get attracted into a region of closed streamlines in a non-accelerating frame (Sapsis & Haller 2010). In a rotating system, however, particles can get trapped (Angilella 2010) near vortices. We perform numerical simulations examining trapping of inertial particles in a prototypical rotating flow: an identical pair of rotating Lamb-Oseen vortices, without gravity. Our parameter space includes the particle Stokes number $St$, measuring the particle's inertia, and a density parameter $R$, measuring the particle-to-fluid relative density. We focus on inertial particles that are finitely denser than the fluid. Particles can get indefinitely trapped near the vortices and display extreme clustering into smaller dimensional objects: attracting fixed-points, limit cycles and chaotic attractors. As $St$ increases for a given $R$, we may have an incomplete or complete period-doubling route to chaos, as well as an unusual period-halving route back to a fixed-point attractor. The fraction of trapped particles can vary non-monotonically with $St$. We may even have windows in $St$ for which no particle trapping occurs. At $St$ larger than a critical value, beyond no trapping occurs, significant fractions of particles can spend long but finite times in the vortex vicinity. The inclusion of the Basset-Boussinesq history (BBH) force is imperative in our study due to particle's finite density. BBH force significantly increases the basin of attraction as well as the range of $St$ where trapping can occur. Extreme clustering can be physically significant in planetesimal formation by dust aggregation in protoplanetary disks, phytoplankton aggregation in oceans, etc.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信