R. Shashangan, S. Sudharsan, A. Venkatesan, M. Senthilvelan
{"title":"缓解可激系统中的极端事件","authors":"R. Shashangan, S. Sudharsan, A. Venkatesan, M. Senthilvelan","doi":"arxiv-2405.05994","DOIUrl":null,"url":null,"abstract":"Formulating mitigation strategies is one of the main aspect in the dynamical\nstudy of extreme events. Apart from the effective control, easy implementation\nof the devised tool should also be given importance. In this work, we analyze\nthe mitigation of extreme events in a coupled FitzHugh-Nagumo (FHN) neuron\nmodel utilizing an easily implementable constant bias analogous to a constant\nDC stimulant. We report the route through which the extreme events gets\nmitigated in $Two$, $Three$ and $N-$coupled FHN systems. In all the three\ncases, extreme events in the observable $\\bar{x}$ gets suppressed. We confirm\nour results with the probability distribution function of peaks, $d_{max}$ plot\nand probability plots. Here $d_{max}$ is a measure of number of standard\ndeviations that crosses the average amplitude corresponding to $\\bar{x}_{max}$.\nInterestingly, we found that constant bias suppresses the extreme events\nwithout changing the collective frequency of the system.","PeriodicalId":501167,"journal":{"name":"arXiv - PHYS - Chaotic Dynamics","volume":"2015 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mitigation of extreme events in an excitable system\",\"authors\":\"R. Shashangan, S. Sudharsan, A. Venkatesan, M. Senthilvelan\",\"doi\":\"arxiv-2405.05994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Formulating mitigation strategies is one of the main aspect in the dynamical\\nstudy of extreme events. Apart from the effective control, easy implementation\\nof the devised tool should also be given importance. In this work, we analyze\\nthe mitigation of extreme events in a coupled FitzHugh-Nagumo (FHN) neuron\\nmodel utilizing an easily implementable constant bias analogous to a constant\\nDC stimulant. We report the route through which the extreme events gets\\nmitigated in $Two$, $Three$ and $N-$coupled FHN systems. In all the three\\ncases, extreme events in the observable $\\\\bar{x}$ gets suppressed. We confirm\\nour results with the probability distribution function of peaks, $d_{max}$ plot\\nand probability plots. Here $d_{max}$ is a measure of number of standard\\ndeviations that crosses the average amplitude corresponding to $\\\\bar{x}_{max}$.\\nInterestingly, we found that constant bias suppresses the extreme events\\nwithout changing the collective frequency of the system.\",\"PeriodicalId\":501167,\"journal\":{\"name\":\"arXiv - PHYS - Chaotic Dynamics\",\"volume\":\"2015 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Chaotic Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.05994\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Chaotic Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.05994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
制定缓解策略是极端事件动态研究的主要内容之一。除了有效的控制之外,所设计工具的易于实施也应受到重视。在这项工作中,我们分析了在耦合 FitzHugh-Nagumo 神经元(FHN)模型中利用类似于恒定 DC 兴奋剂的易实现恒定偏置来缓解极端事件的问题。我们报告了在两元、三元和 N 元耦合 FHN 系统中极端事件得到缓解的途径。在所有三种情况下,观测值 $\bar{x}$ 中的极端事件都会被抑制。我们用峰值概率分布函数、$d_{max}$图和概率图证实了我们的结果。这里的$d_{max}$是衡量与$\bar{x}_{max}$对应的平均振幅相交的标准偏差的数量。有趣的是,我们发现恒定偏差会抑制极端事件,而不会改变系统的集体频率。
Mitigation of extreme events in an excitable system
Formulating mitigation strategies is one of the main aspect in the dynamical
study of extreme events. Apart from the effective control, easy implementation
of the devised tool should also be given importance. In this work, we analyze
the mitigation of extreme events in a coupled FitzHugh-Nagumo (FHN) neuron
model utilizing an easily implementable constant bias analogous to a constant
DC stimulant. We report the route through which the extreme events gets
mitigated in $Two$, $Three$ and $N-$coupled FHN systems. In all the three
cases, extreme events in the observable $\bar{x}$ gets suppressed. We confirm
our results with the probability distribution function of peaks, $d_{max}$ plot
and probability plots. Here $d_{max}$ is a measure of number of standard
deviations that crosses the average amplitude corresponding to $\bar{x}_{max}$.
Interestingly, we found that constant bias suppresses the extreme events
without changing the collective frequency of the system.