{"title":"厄尔多斯-萨尔科齐-索斯问题在 3 阶西顿渐近基上的求解","authors":"Cédric Pilatte","doi":"10.1112/s0010437x24007140","DOIUrl":null,"url":null,"abstract":"<p>A set <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240509195826895-0930:S0010437X24007140:S0010437X24007140_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$S\\subset {\\mathbb {N}}$</span></span></img></span></span> is a <span>Sidon set</span> if all pairwise sums <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240509195826895-0930:S0010437X24007140:S0010437X24007140_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$s_1+s_2$</span></span></img></span></span> (for <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240509195826895-0930:S0010437X24007140:S0010437X24007140_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$s_1, s_2\\in S$</span></span></img></span></span>, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240509195826895-0930:S0010437X24007140:S0010437X24007140_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$s_1\\leqslant s_2$</span></span></img></span></span>) are distinct. A set <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240509195826895-0930:S0010437X24007140:S0010437X24007140_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$S\\subset {\\mathbb {N}}$</span></span></img></span></span> is an <span>asymptotic basis of order 3</span> if every sufficiently large integer <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240509195826895-0930:S0010437X24007140:S0010437X24007140_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$n$</span></span></img></span></span> can be written as the sum of three elements of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240509195826895-0930:S0010437X24007140:S0010437X24007140_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$S$</span></span></img></span></span>. In 1993, Erdős, Sárközy and Sós asked whether there exists a set <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240509195826895-0930:S0010437X24007140:S0010437X24007140_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$S$</span></span></img></span></span> with both properties. We answer this question in the affirmative. Our proof relies on a deep result of Sawin on the <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240509195826895-0930:S0010437X24007140:S0010437X24007140_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {F}_q[t]$</span></span></img></span></span>-analogue of Montgomery's conjecture for convolutions of the von Mangoldt function.</p>","PeriodicalId":55232,"journal":{"name":"Compositio Mathematica","volume":"21 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A solution to the Erdős–Sárközy–Sós problem on asymptotic Sidon bases of order 3\",\"authors\":\"Cédric Pilatte\",\"doi\":\"10.1112/s0010437x24007140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A set <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240509195826895-0930:S0010437X24007140:S0010437X24007140_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$S\\\\subset {\\\\mathbb {N}}$</span></span></img></span></span> is a <span>Sidon set</span> if all pairwise sums <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240509195826895-0930:S0010437X24007140:S0010437X24007140_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$s_1+s_2$</span></span></img></span></span> (for <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240509195826895-0930:S0010437X24007140:S0010437X24007140_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$s_1, s_2\\\\in S$</span></span></img></span></span>, <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240509195826895-0930:S0010437X24007140:S0010437X24007140_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$s_1\\\\leqslant s_2$</span></span></img></span></span>) are distinct. A set <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240509195826895-0930:S0010437X24007140:S0010437X24007140_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$S\\\\subset {\\\\mathbb {N}}$</span></span></img></span></span> is an <span>asymptotic basis of order 3</span> if every sufficiently large integer <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240509195826895-0930:S0010437X24007140:S0010437X24007140_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$n$</span></span></img></span></span> can be written as the sum of three elements of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240509195826895-0930:S0010437X24007140:S0010437X24007140_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$S$</span></span></img></span></span>. In 1993, Erdős, Sárközy and Sós asked whether there exists a set <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240509195826895-0930:S0010437X24007140:S0010437X24007140_inline8.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$S$</span></span></img></span></span> with both properties. We answer this question in the affirmative. Our proof relies on a deep result of Sawin on the <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240509195826895-0930:S0010437X24007140:S0010437X24007140_inline9.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {F}_q[t]$</span></span></img></span></span>-analogue of Montgomery's conjecture for convolutions of the von Mangoldt function.</p>\",\"PeriodicalId\":55232,\"journal\":{\"name\":\"Compositio Mathematica\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Compositio Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1112/s0010437x24007140\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Compositio Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/s0010437x24007140","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
A solution to the Erdős–Sárközy–Sós problem on asymptotic Sidon bases of order 3
A set $S\subset {\mathbb {N}}$ is a Sidon set if all pairwise sums $s_1+s_2$ (for $s_1, s_2\in S$, $s_1\leqslant s_2$) are distinct. A set $S\subset {\mathbb {N}}$ is an asymptotic basis of order 3 if every sufficiently large integer $n$ can be written as the sum of three elements of $S$. In 1993, Erdős, Sárközy and Sós asked whether there exists a set $S$ with both properties. We answer this question in the affirmative. Our proof relies on a deep result of Sawin on the $\mathbb {F}_q[t]$-analogue of Montgomery's conjecture for convolutions of the von Mangoldt function.
期刊介绍:
Compositio Mathematica is a prestigious, well-established journal publishing first-class research papers that traditionally focus on the mainstream of pure mathematics. Compositio Mathematica has a broad scope which includes the fields of algebra, number theory, topology, algebraic and differential geometry and global analysis. Papers on other topics are welcome if they are of broad interest. All contributions are required to meet high standards of quality and originality. The Journal has an international editorial board reflected in the journal content.