厄尔多斯-萨尔科齐-索斯问题在 3 阶西顿渐近基上的求解

IF 1.3 1区 数学 Q1 MATHEMATICS
Cédric Pilatte
{"title":"厄尔多斯-萨尔科齐-索斯问题在 3 阶西顿渐近基上的求解","authors":"Cédric Pilatte","doi":"10.1112/s0010437x24007140","DOIUrl":null,"url":null,"abstract":"<p>A set <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240509195826895-0930:S0010437X24007140:S0010437X24007140_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$S\\subset {\\mathbb {N}}$</span></span></img></span></span> is a <span>Sidon set</span> if all pairwise sums <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240509195826895-0930:S0010437X24007140:S0010437X24007140_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$s_1+s_2$</span></span></img></span></span> (for <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240509195826895-0930:S0010437X24007140:S0010437X24007140_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$s_1, s_2\\in S$</span></span></img></span></span>, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240509195826895-0930:S0010437X24007140:S0010437X24007140_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$s_1\\leqslant s_2$</span></span></img></span></span>) are distinct. A set <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240509195826895-0930:S0010437X24007140:S0010437X24007140_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$S\\subset {\\mathbb {N}}$</span></span></img></span></span> is an <span>asymptotic basis of order 3</span> if every sufficiently large integer <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240509195826895-0930:S0010437X24007140:S0010437X24007140_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$n$</span></span></img></span></span> can be written as the sum of three elements of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240509195826895-0930:S0010437X24007140:S0010437X24007140_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$S$</span></span></img></span></span>. In 1993, Erdős, Sárközy and Sós asked whether there exists a set <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240509195826895-0930:S0010437X24007140:S0010437X24007140_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$S$</span></span></img></span></span> with both properties. We answer this question in the affirmative. Our proof relies on a deep result of Sawin on the <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240509195826895-0930:S0010437X24007140:S0010437X24007140_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {F}_q[t]$</span></span></img></span></span>-analogue of Montgomery's conjecture for convolutions of the von Mangoldt function.</p>","PeriodicalId":55232,"journal":{"name":"Compositio Mathematica","volume":"21 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A solution to the Erdős–Sárközy–Sós problem on asymptotic Sidon bases of order 3\",\"authors\":\"Cédric Pilatte\",\"doi\":\"10.1112/s0010437x24007140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A set <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240509195826895-0930:S0010437X24007140:S0010437X24007140_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$S\\\\subset {\\\\mathbb {N}}$</span></span></img></span></span> is a <span>Sidon set</span> if all pairwise sums <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240509195826895-0930:S0010437X24007140:S0010437X24007140_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$s_1+s_2$</span></span></img></span></span> (for <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240509195826895-0930:S0010437X24007140:S0010437X24007140_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$s_1, s_2\\\\in S$</span></span></img></span></span>, <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240509195826895-0930:S0010437X24007140:S0010437X24007140_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$s_1\\\\leqslant s_2$</span></span></img></span></span>) are distinct. A set <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240509195826895-0930:S0010437X24007140:S0010437X24007140_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$S\\\\subset {\\\\mathbb {N}}$</span></span></img></span></span> is an <span>asymptotic basis of order 3</span> if every sufficiently large integer <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240509195826895-0930:S0010437X24007140:S0010437X24007140_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$n$</span></span></img></span></span> can be written as the sum of three elements of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240509195826895-0930:S0010437X24007140:S0010437X24007140_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$S$</span></span></img></span></span>. In 1993, Erdős, Sárközy and Sós asked whether there exists a set <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240509195826895-0930:S0010437X24007140:S0010437X24007140_inline8.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$S$</span></span></img></span></span> with both properties. We answer this question in the affirmative. Our proof relies on a deep result of Sawin on the <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240509195826895-0930:S0010437X24007140:S0010437X24007140_inline9.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {F}_q[t]$</span></span></img></span></span>-analogue of Montgomery's conjecture for convolutions of the von Mangoldt function.</p>\",\"PeriodicalId\":55232,\"journal\":{\"name\":\"Compositio Mathematica\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Compositio Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1112/s0010437x24007140\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Compositio Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/s0010437x24007140","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

如果所有成对的和 $s_1+s_2$ (对于 S$中的 $s_1,s_2/$,$s_1/leqslant s_2$)都是不同的,那么一个集合 $S\subset {\mathbb {N}}$ 就是一个西顿集合。如果每个足够大的整数 $n$ 都可以写成 $S$ 的三个元素之和,那么集合 $S$ 的子集 {\mathbb {N}}$ 就是阶数为 3 的渐近基。1993 年,厄尔多斯、萨尔科齐和索斯提出了是否存在同时具有这两种性质的集合 $S$。我们的回答是肯定的。我们的证明依赖于萨温关于$\mathbb {F}_q[t]$ --蒙哥马利对冯-曼戈尔德函数卷积的猜想的一个深层结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A solution to the Erdős–Sárközy–Sós problem on asymptotic Sidon bases of order 3

A set $S\subset {\mathbb {N}}$ is a Sidon set if all pairwise sums $s_1+s_2$ (for $s_1, s_2\in S$, $s_1\leqslant s_2$) are distinct. A set $S\subset {\mathbb {N}}$ is an asymptotic basis of order 3 if every sufficiently large integer $n$ can be written as the sum of three elements of $S$. In 1993, Erdős, Sárközy and Sós asked whether there exists a set $S$ with both properties. We answer this question in the affirmative. Our proof relies on a deep result of Sawin on the $\mathbb {F}_q[t]$-analogue of Montgomery's conjecture for convolutions of the von Mangoldt function.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Compositio Mathematica
Compositio Mathematica 数学-数学
CiteScore
2.10
自引率
0.00%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Compositio Mathematica is a prestigious, well-established journal publishing first-class research papers that traditionally focus on the mainstream of pure mathematics. Compositio Mathematica has a broad scope which includes the fields of algebra, number theory, topology, algebraic and differential geometry and global analysis. Papers on other topics are welcome if they are of broad interest. All contributions are required to meet high standards of quality and originality. The Journal has an international editorial board reflected in the journal content.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信