{"title":"关于上深海表征的输入和朗兰兹参数","authors":"Beth Romano","doi":"10.1090/ert/668","DOIUrl":null,"url":null,"abstract":"<p>A paper of Reeder–Yu [J. Amer. Math. Soc. 27 (2014), pp. 437–477] gives a construction of epipelagic supercuspidal representations of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-adic groups. The input for this construction is a pair <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis lamda comma chi right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>λ<!-- λ --></mml:mi> <mml:mo>,</mml:mo> <mml:mi>χ<!-- χ --></mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(\\lambda , \\chi )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"lamda\"> <mml:semantics> <mml:mi>λ<!-- λ --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\lambda</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a stable vector in a certain representation coming from a Moy–Prasad filtration, and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"chi\"> <mml:semantics> <mml:mi>χ<!-- χ --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\chi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a character of the additive group of the residue field. We say two such pairs are equivalent if the resulting supercuspidal representations are isomorphic. In this paper we describe the equivalence classes of such pairs. As an application, we give a classification of the simple supercuspidal representations for split adjoint groups. Finally, under an assumption about unramified base change, we describe properties of the Langlands parameters associated to these simple supercuspidals, showing that they have trivial L-functions and minimal Swan conductors, and showing that each of these simple supercuspidals lies in a singleton L-packet.</p>","PeriodicalId":51304,"journal":{"name":"Representation Theory","volume":"39 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On input and Langlands parameters for epipelagic representations\",\"authors\":\"Beth Romano\",\"doi\":\"10.1090/ert/668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A paper of Reeder–Yu [J. Amer. Math. Soc. 27 (2014), pp. 437–477] gives a construction of epipelagic supercuspidal representations of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p\\\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-adic groups. The input for this construction is a pair <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis lamda comma chi right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>λ<!-- λ --></mml:mi> <mml:mo>,</mml:mo> <mml:mi>χ<!-- χ --></mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">(\\\\lambda , \\\\chi )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> where <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"lamda\\\"> <mml:semantics> <mml:mi>λ<!-- λ --></mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\lambda</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a stable vector in a certain representation coming from a Moy–Prasad filtration, and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"chi\\\"> <mml:semantics> <mml:mi>χ<!-- χ --></mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\chi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a character of the additive group of the residue field. We say two such pairs are equivalent if the resulting supercuspidal representations are isomorphic. In this paper we describe the equivalence classes of such pairs. As an application, we give a classification of the simple supercuspidal representations for split adjoint groups. Finally, under an assumption about unramified base change, we describe properties of the Langlands parameters associated to these simple supercuspidals, showing that they have trivial L-functions and minimal Swan conductors, and showing that each of these simple supercuspidals lies in a singleton L-packet.</p>\",\"PeriodicalId\":51304,\"journal\":{\"name\":\"Representation Theory\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Representation Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/ert/668\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Representation Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/ert/668","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
On input and Langlands parameters for epipelagic representations
A paper of Reeder–Yu [J. Amer. Math. Soc. 27 (2014), pp. 437–477] gives a construction of epipelagic supercuspidal representations of pp-adic groups. The input for this construction is a pair (λ,χ)(\lambda , \chi ) where λ\lambda is a stable vector in a certain representation coming from a Moy–Prasad filtration, and χ\chi is a character of the additive group of the residue field. We say two such pairs are equivalent if the resulting supercuspidal representations are isomorphic. In this paper we describe the equivalence classes of such pairs. As an application, we give a classification of the simple supercuspidal representations for split adjoint groups. Finally, under an assumption about unramified base change, we describe properties of the Langlands parameters associated to these simple supercuspidals, showing that they have trivial L-functions and minimal Swan conductors, and showing that each of these simple supercuspidals lies in a singleton L-packet.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This electronic-only journal is devoted to research in representation theory and seeks to maintain a high standard for exposition as well as for mathematical content.
Representation Theory is an open access journal freely available to all readers and with no publishing fees for authors.