关于上深海表征的输入和朗兰兹参数

IF 0.7 3区 数学 Q2 MATHEMATICS
Beth Romano
{"title":"关于上深海表征的输入和朗兰兹参数","authors":"Beth Romano","doi":"10.1090/ert/668","DOIUrl":null,"url":null,"abstract":"<p>A paper of Reeder–Yu [J. Amer. Math. Soc. 27 (2014), pp. 437–477] gives a construction of epipelagic supercuspidal representations of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-adic groups. The input for this construction is a pair <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis lamda comma chi right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>λ<!-- λ --></mml:mi> <mml:mo>,</mml:mo> <mml:mi>χ<!-- χ --></mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(\\lambda , \\chi )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"lamda\"> <mml:semantics> <mml:mi>λ<!-- λ --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\lambda</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a stable vector in a certain representation coming from a Moy–Prasad filtration, and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"chi\"> <mml:semantics> <mml:mi>χ<!-- χ --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\chi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a character of the additive group of the residue field. We say two such pairs are equivalent if the resulting supercuspidal representations are isomorphic. In this paper we describe the equivalence classes of such pairs. As an application, we give a classification of the simple supercuspidal representations for split adjoint groups. Finally, under an assumption about unramified base change, we describe properties of the Langlands parameters associated to these simple supercuspidals, showing that they have trivial L-functions and minimal Swan conductors, and showing that each of these simple supercuspidals lies in a singleton L-packet.</p>","PeriodicalId":51304,"journal":{"name":"Representation Theory","volume":"39 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On input and Langlands parameters for epipelagic representations\",\"authors\":\"Beth Romano\",\"doi\":\"10.1090/ert/668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A paper of Reeder–Yu [J. Amer. Math. Soc. 27 (2014), pp. 437–477] gives a construction of epipelagic supercuspidal representations of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p\\\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-adic groups. The input for this construction is a pair <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis lamda comma chi right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>λ<!-- λ --></mml:mi> <mml:mo>,</mml:mo> <mml:mi>χ<!-- χ --></mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">(\\\\lambda , \\\\chi )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> where <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"lamda\\\"> <mml:semantics> <mml:mi>λ<!-- λ --></mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\lambda</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a stable vector in a certain representation coming from a Moy–Prasad filtration, and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"chi\\\"> <mml:semantics> <mml:mi>χ<!-- χ --></mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\chi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a character of the additive group of the residue field. We say two such pairs are equivalent if the resulting supercuspidal representations are isomorphic. In this paper we describe the equivalence classes of such pairs. As an application, we give a classification of the simple supercuspidal representations for split adjoint groups. Finally, under an assumption about unramified base change, we describe properties of the Langlands parameters associated to these simple supercuspidals, showing that they have trivial L-functions and minimal Swan conductors, and showing that each of these simple supercuspidals lies in a singleton L-packet.</p>\",\"PeriodicalId\":51304,\"journal\":{\"name\":\"Representation Theory\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Representation Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/ert/668\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Representation Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/ert/668","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Reeder-Yu 的一篇论文[J. Amer. Math. Soc. 27 (2014), pp.这个构造的输入是一对 ( λ , χ ) (\lambda , \chi ) ,其中 λ \lambda 是来自 Moy-Prasad 滤波的某个表示中的稳定向量,而 χ \chi 是残差域的加法群的一个特征。如果得到的超pidal 表示是同构的,我们就说这两对表示是等价的。在本文中,我们描述了这类对的等价类。作为应用,我们给出了分裂邻接群的简单超pidal 表示的分类。最后,在无克拉姆基变化的假设下,我们描述了与这些简单超pidals 相关的朗兰兹参数的性质,证明它们具有微不足道的 L 函数和最小斯旺导体,并证明这些简单超pidals 中的每一个都位于一个单子 L 包中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On input and Langlands parameters for epipelagic representations

A paper of Reeder–Yu [J. Amer. Math. Soc. 27 (2014), pp. 437–477] gives a construction of epipelagic supercuspidal representations of p p -adic groups. The input for this construction is a pair ( λ , χ ) (\lambda , \chi ) where λ \lambda is a stable vector in a certain representation coming from a Moy–Prasad filtration, and χ \chi is a character of the additive group of the residue field. We say two such pairs are equivalent if the resulting supercuspidal representations are isomorphic. In this paper we describe the equivalence classes of such pairs. As an application, we give a classification of the simple supercuspidal representations for split adjoint groups. Finally, under an assumption about unramified base change, we describe properties of the Langlands parameters associated to these simple supercuspidals, showing that they have trivial L-functions and minimal Swan conductors, and showing that each of these simple supercuspidals lies in a singleton L-packet.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Representation Theory
Representation Theory MATHEMATICS-
CiteScore
0.90
自引率
0.00%
发文量
70
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This electronic-only journal is devoted to research in representation theory and seeks to maintain a high standard for exposition as well as for mathematical content. Representation Theory is an open access journal freely available to all readers and with no publishing fees for authors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信