识别单羧酸的功能化腺嘌呤基受体

IF 1.7 3区 化学 Q3 CHEMISTRY, ORGANIC
Tanushree Sen, Suman Adhikari, Nabajyoti Baildya, Kumaresh Ghosh
{"title":"识别单羧酸的功能化腺嘌呤基受体","authors":"Tanushree Sen, Suman Adhikari, Nabajyoti Baildya, Kumaresh Ghosh","doi":"10.2174/0113852728303168240424052507","DOIUrl":null,"url":null,"abstract":": Three receptors 1-3, built on adenine, have been synthesized, structurally characterized, and successfully employed for the recognition of monocarboxylic acids. The adenine-based receptors 1-3 have been found to bind monocarboxylic acids via the Hoogsteen (HG) binding site or the Watson-Crick (WC) binding site and form 1:1 complexes in CHCl3. Detailed binding of the receptors 1-3, in the presence of the monocarboxylic acids, corroborates that there is a distinct propensity of the HG site for aromatic carboxylic acids, for example, (S)-mandelic acid and benzoic acid. Aliphatic acids, for example, propanoic acid and rac-lactic acid, on the other hand, prefer to bind at the WC site. The monocarboxylic acid bindings to 1-3 were examined by UV–Vis, fluorescence, and 1 H NMR spectroscopic methods, and DFT study.","PeriodicalId":10926,"journal":{"name":"Current Organic Chemistry","volume":"24 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functionalized Adenine-Based Receptors for Monocarboxylic Acids’ Recognition\",\"authors\":\"Tanushree Sen, Suman Adhikari, Nabajyoti Baildya, Kumaresh Ghosh\",\"doi\":\"10.2174/0113852728303168240424052507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Three receptors 1-3, built on adenine, have been synthesized, structurally characterized, and successfully employed for the recognition of monocarboxylic acids. The adenine-based receptors 1-3 have been found to bind monocarboxylic acids via the Hoogsteen (HG) binding site or the Watson-Crick (WC) binding site and form 1:1 complexes in CHCl3. Detailed binding of the receptors 1-3, in the presence of the monocarboxylic acids, corroborates that there is a distinct propensity of the HG site for aromatic carboxylic acids, for example, (S)-mandelic acid and benzoic acid. Aliphatic acids, for example, propanoic acid and rac-lactic acid, on the other hand, prefer to bind at the WC site. The monocarboxylic acid bindings to 1-3 were examined by UV–Vis, fluorescence, and 1 H NMR spectroscopic methods, and DFT study.\",\"PeriodicalId\":10926,\"journal\":{\"name\":\"Current Organic Chemistry\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Organic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.2174/0113852728303168240424052507\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2174/0113852728303168240424052507","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

摘要

:我们合成了以腺嘌呤为基础的三种受体 1-3,对其进行了结构表征,并成功地将其用于识别单羧酸。研究发现,以腺嘌呤为基础的受体 1-3 可通过 Hoogsteen(HG)结合位点或 Watson-Crick (WC)结合位点与单羧酸结合,并在 CHCl3 中形成 1:1 的复合物。受体 1-3 在单羧酸存在下的详细结合情况证实,HG 位点对芳香族羧酸(如 (S)-mandelic acid 和苯甲酸)有明显的倾向性。另一方面,脂肪族酸(如丙酸和rac-乳酸)更倾向于与 WC 位点结合。通过紫外-可见光、荧光和 1 H NMR 光谱方法以及 DFT 研究,考察了单羧酸与 1-3 的结合情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Functionalized Adenine-Based Receptors for Monocarboxylic Acids’ Recognition
: Three receptors 1-3, built on adenine, have been synthesized, structurally characterized, and successfully employed for the recognition of monocarboxylic acids. The adenine-based receptors 1-3 have been found to bind monocarboxylic acids via the Hoogsteen (HG) binding site or the Watson-Crick (WC) binding site and form 1:1 complexes in CHCl3. Detailed binding of the receptors 1-3, in the presence of the monocarboxylic acids, corroborates that there is a distinct propensity of the HG site for aromatic carboxylic acids, for example, (S)-mandelic acid and benzoic acid. Aliphatic acids, for example, propanoic acid and rac-lactic acid, on the other hand, prefer to bind at the WC site. The monocarboxylic acid bindings to 1-3 were examined by UV–Vis, fluorescence, and 1 H NMR spectroscopic methods, and DFT study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Organic Chemistry
Current Organic Chemistry 化学-有机化学
CiteScore
3.70
自引率
7.70%
发文量
76
审稿时长
1 months
期刊介绍: Current Organic Chemistry aims to provide in-depth/mini reviews on the current progress in various fields related to organic chemistry including bioorganic chemistry, organo-metallic chemistry, asymmetric synthesis, heterocyclic chemistry, natural product chemistry, catalytic and green chemistry, suitable aspects of medicinal chemistry and polymer chemistry, as well as analytical methods in organic chemistry. The frontier reviews provide the current state of knowledge in these fields and are written by chosen experts who are internationally known for their eminent research contributions. The Journal also accepts high quality research papers focusing on hot topics, highlights and letters besides thematic issues in these fields. Current Organic Chemistry should prove to be of great interest to organic chemists in academia and industry, who wish to keep abreast with recent developments in key fields of organic chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信