少乘积集合的 Elekes-Rónyai 定理

Pub Date : 2024-05-07 DOI:10.1093/imrn/rnae087
Akshat Mudgal
{"title":"少乘积集合的 Elekes-Rónyai 定理","authors":"Akshat Mudgal","doi":"10.1093/imrn/rnae087","DOIUrl":null,"url":null,"abstract":"Given $n \\in \\mathbb{N}$, we call a polynomial $F \\in \\mathbb{C}[x_{1},\\dots ,x_{n}]$ degenerate if there exist $P\\in \\mathbb{C}[y_{1}, \\dots , y_{n-1}]$ and monomials $m_{1}, \\dots , m_{n-1}$ with fractional exponents, such that $F = P(m_{1}, \\dots , m_{n-1})$. Our main result shows that whenever a polynomial $F$, with degree $d \\geq 1$, is non-degenerate, then for every finite, non-empty set $A\\subset \\mathbb{C}$ such that $|A\\cdot A| \\leq K|A|$, one has $$ \\begin{align*} & |F(A, \\dots, A)| \\gg |A|^{n} 2^{-O_{d,n}((\\log 2K)^{3 + o(1)})}. \\end{align*} $$This is sharp since for every degenerate $F$ and finite set $A \\subset \\mathbb{C}$ with $|A\\cdot A| \\leq K|A|$, one has $$ \\begin{align*} & |F(A,\\dots,A)| \\ll K^{O_{F}(1)}|A|^{n-1}.\\end{align*} $$Our techniques rely on Freiman type inverse theorems and Schmidt’s subspace theorem.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Elekes–Rónyai Theorem for Sets With Few Products\",\"authors\":\"Akshat Mudgal\",\"doi\":\"10.1093/imrn/rnae087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given $n \\\\in \\\\mathbb{N}$, we call a polynomial $F \\\\in \\\\mathbb{C}[x_{1},\\\\dots ,x_{n}]$ degenerate if there exist $P\\\\in \\\\mathbb{C}[y_{1}, \\\\dots , y_{n-1}]$ and monomials $m_{1}, \\\\dots , m_{n-1}$ with fractional exponents, such that $F = P(m_{1}, \\\\dots , m_{n-1})$. Our main result shows that whenever a polynomial $F$, with degree $d \\\\geq 1$, is non-degenerate, then for every finite, non-empty set $A\\\\subset \\\\mathbb{C}$ such that $|A\\\\cdot A| \\\\leq K|A|$, one has $$ \\\\begin{align*} & |F(A, \\\\dots, A)| \\\\gg |A|^{n} 2^{-O_{d,n}((\\\\log 2K)^{3 + o(1)})}. \\\\end{align*} $$This is sharp since for every degenerate $F$ and finite set $A \\\\subset \\\\mathbb{C}$ with $|A\\\\cdot A| \\\\leq K|A|$, one has $$ \\\\begin{align*} & |F(A,\\\\dots,A)| \\\\ll K^{O_{F}(1)}|A|^{n-1}.\\\\end{align*} $$Our techniques rely on Freiman type inverse theorems and Schmidt’s subspace theorem.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imrn/rnae087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给定 $n in \mathbb{N}$,如果存在 $P\in \mathbb{C}[y_{1}、\dots , y_{n-1}]$ 中存在 $P 和小数指数的单项式 $m_{1}, \dots , m_{n-1}$,使得 $F = P(m_{1}, \dots , m_{n-1})$ 退化。我们的主要结果表明,每当阶数为 $d \geq 1$ 的多项式 $F$ 是非退化的,那么对于每一个有限非空集 $A\subset \mathbb{C}$ ,使得 $|A\cdot A| \leq K|A|$,都有 $$ \begin{align*} &;|F(A, \dots, A)| \gg |A|^{n} 2^{-O_{d,n}((\log 2K)^{3 + o(1)})}.\end{align*}$$This is sharp since for every degenerate $F$ and finite set $A \subset \mathbb{C}$ with $|A\cdot A| \leq K|A|$, one has $$ \begin{align*} & |F(A,\dots,A)| \ll K^{O_{F}(1)}|A|^{n-1}.\end{align*}.$$我们的技术依赖于 Freiman 型逆定理和施密特子空间定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
An Elekes–Rónyai Theorem for Sets With Few Products
Given $n \in \mathbb{N}$, we call a polynomial $F \in \mathbb{C}[x_{1},\dots ,x_{n}]$ degenerate if there exist $P\in \mathbb{C}[y_{1}, \dots , y_{n-1}]$ and monomials $m_{1}, \dots , m_{n-1}$ with fractional exponents, such that $F = P(m_{1}, \dots , m_{n-1})$. Our main result shows that whenever a polynomial $F$, with degree $d \geq 1$, is non-degenerate, then for every finite, non-empty set $A\subset \mathbb{C}$ such that $|A\cdot A| \leq K|A|$, one has $$ \begin{align*} & |F(A, \dots, A)| \gg |A|^{n} 2^{-O_{d,n}((\log 2K)^{3 + o(1)})}. \end{align*} $$This is sharp since for every degenerate $F$ and finite set $A \subset \mathbb{C}$ with $|A\cdot A| \leq K|A|$, one has $$ \begin{align*} & |F(A,\dots,A)| \ll K^{O_{F}(1)}|A|^{n-1}.\end{align*} $$Our techniques rely on Freiman type inverse theorems and Schmidt’s subspace theorem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信