{"title":"基于贝叶斯 GPR 的风力涡轮机叶片概率疲劳寿命评估方法(含俯仰角影响","authors":"Xiaoling Zhang, Kejia Zhang, Zhongzhe Chen","doi":"10.1002/qre.3575","DOIUrl":null,"url":null,"abstract":"The fatigue behavior of large wind turbine blades is complex and stochastic due to their complex structure and operating environment. This paper focuses on developing a probabilistic fatigue life assessment method for wind turbine blades considering the uncertainties from wind velocity, material mechanical properties, pitch angle, and layer thickness. To improve the efficiency of stochastic fatigue behavior analysis of wind turbine blade, unidirectional fluid‐structure coupling (UFSC) and bidirectional fluid‐structure coupling (BFSC) analysis are employed to analyze the stochastic response. Then, Gaussian process regression (GPR) and Bayesian updating are combined to establish the stochastic fatigue behavior prediction model for wind turbine blade. On this basis, a modified S‐N curve formulation is proposed, and the fatigue life of wind turbine blade is analyzed by the modified S‐N curve and compared with the three‐parameter Weibull model. The results indicate that the proposed method for fatigue life assessment has better accuracy. The proposed probabilistic fatigue life assessment method with high accuracy and high efficiency, which is beneficial for the fatigue reliability design of wind turbine blades.","PeriodicalId":56088,"journal":{"name":"Quality and Reliability Engineering International","volume":"82 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A probabilistic fatigue life assessment method for wind turbine blade based on Bayesian GPR with the effects of pitch angle\",\"authors\":\"Xiaoling Zhang, Kejia Zhang, Zhongzhe Chen\",\"doi\":\"10.1002/qre.3575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fatigue behavior of large wind turbine blades is complex and stochastic due to their complex structure and operating environment. This paper focuses on developing a probabilistic fatigue life assessment method for wind turbine blades considering the uncertainties from wind velocity, material mechanical properties, pitch angle, and layer thickness. To improve the efficiency of stochastic fatigue behavior analysis of wind turbine blade, unidirectional fluid‐structure coupling (UFSC) and bidirectional fluid‐structure coupling (BFSC) analysis are employed to analyze the stochastic response. Then, Gaussian process regression (GPR) and Bayesian updating are combined to establish the stochastic fatigue behavior prediction model for wind turbine blade. On this basis, a modified S‐N curve formulation is proposed, and the fatigue life of wind turbine blade is analyzed by the modified S‐N curve and compared with the three‐parameter Weibull model. The results indicate that the proposed method for fatigue life assessment has better accuracy. The proposed probabilistic fatigue life assessment method with high accuracy and high efficiency, which is beneficial for the fatigue reliability design of wind turbine blades.\",\"PeriodicalId\":56088,\"journal\":{\"name\":\"Quality and Reliability Engineering International\",\"volume\":\"82 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quality and Reliability Engineering International\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/qre.3575\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quality and Reliability Engineering International","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/qre.3575","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
A probabilistic fatigue life assessment method for wind turbine blade based on Bayesian GPR with the effects of pitch angle
The fatigue behavior of large wind turbine blades is complex and stochastic due to their complex structure and operating environment. This paper focuses on developing a probabilistic fatigue life assessment method for wind turbine blades considering the uncertainties from wind velocity, material mechanical properties, pitch angle, and layer thickness. To improve the efficiency of stochastic fatigue behavior analysis of wind turbine blade, unidirectional fluid‐structure coupling (UFSC) and bidirectional fluid‐structure coupling (BFSC) analysis are employed to analyze the stochastic response. Then, Gaussian process regression (GPR) and Bayesian updating are combined to establish the stochastic fatigue behavior prediction model for wind turbine blade. On this basis, a modified S‐N curve formulation is proposed, and the fatigue life of wind turbine blade is analyzed by the modified S‐N curve and compared with the three‐parameter Weibull model. The results indicate that the proposed method for fatigue life assessment has better accuracy. The proposed probabilistic fatigue life assessment method with high accuracy and high efficiency, which is beneficial for the fatigue reliability design of wind turbine blades.
期刊介绍:
Quality and Reliability Engineering International is a journal devoted to practical engineering aspects of quality and reliability. A refereed technical journal published eight times per year, it covers the development and practical application of existing theoretical methods, research and industrial practices. Articles in the journal will be concerned with case studies, tutorial-type reviews and also with applications of new or well-known theory to the solution of actual quality and reliability problems in engineering.
Papers describing the use of mathematical and statistical tools to solve real life industrial problems are encouraged, provided that the emphasis is placed on practical applications and demonstrated case studies.
The scope of the journal is intended to include components, physics of failure, equipment and systems from the fields of electronic, electrical, mechanical and systems engineering. The areas of communications, aerospace, automotive, railways, shipboard equipment, control engineering and consumer products are all covered by the journal.
Quality and reliability of hardware as well as software are covered. Papers on software engineering and its impact on product quality and reliability are encouraged. The journal will also cover the management of quality and reliability in the engineering industry.
Special issues on a variety of key topics are published every year and contribute to the enhancement of Quality and Reliability Engineering International as a major reference in its field.