{"title":"具有周期势能的格罗斯-皮塔耶夫斯基方程三维解","authors":"Yu. Karpeshina, Seonguk Kim, R. Shterenberg","doi":"10.1090/spmj/1798","DOIUrl":null,"url":null,"abstract":"<p>Quasiperiodic solutions of the Gross–Pitaevskii equation with a periodic potential in dimension three are studied. It is proved that there is an extensive “nonresonant” set <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper G subset-of double-struck upper R cubed\"> <mml:semantics> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\"script\">G</mml:mi> </mml:mrow> <mml:mo>⊂<!-- ⊂ --></mml:mo> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mn>3</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathcal {G}\\subset \\mathbb {R}^3</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that for every <inline-formula content-type=\"math/tex\"> <tex-math> \\vv k\\in \\mathcal {G}</tex-math></inline-formula> there is a solution asymptotically close to a plane wave <inline-formula content-type=\"math/tex\"> <tex-math> Ae^{i\\langle \\vv {k},\\vv {x}\\rangle }</tex-math></inline-formula> as <inline-formula content-type=\"math/tex\"> <tex-math> |\\vv k|\\to \\infty </tex-math></inline-formula>, given <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A\"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding=\"application/x-tex\">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is sufficiently small.</p>","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":"13 2 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solutions of Gross–Pitaevskii equation with periodic potential in dimension three\",\"authors\":\"Yu. Karpeshina, Seonguk Kim, R. Shterenberg\",\"doi\":\"10.1090/spmj/1798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Quasiperiodic solutions of the Gross–Pitaevskii equation with a periodic potential in dimension three are studied. It is proved that there is an extensive “nonresonant” set <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper G subset-of double-struck upper R cubed\\\"> <mml:semantics> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\\\"script\\\">G</mml:mi> </mml:mrow> <mml:mo>⊂<!-- ⊂ --></mml:mo> <mml:msup> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi> </mml:mrow> <mml:mn>3</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {G}\\\\subset \\\\mathbb {R}^3</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that for every <inline-formula content-type=\\\"math/tex\\\"> <tex-math> \\\\vv k\\\\in \\\\mathcal {G}</tex-math></inline-formula> there is a solution asymptotically close to a plane wave <inline-formula content-type=\\\"math/tex\\\"> <tex-math> Ae^{i\\\\langle \\\\vv {k},\\\\vv {x}\\\\rangle }</tex-math></inline-formula> as <inline-formula content-type=\\\"math/tex\\\"> <tex-math> |\\\\vv k|\\\\to \\\\infty </tex-math></inline-formula>, given <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper A\\\"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is sufficiently small.</p>\",\"PeriodicalId\":51162,\"journal\":{\"name\":\"St Petersburg Mathematical Journal\",\"volume\":\"13 2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"St Petersburg Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/spmj/1798\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"St Petersburg Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/spmj/1798","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
研究了三维中具有周期势的格罗斯-皮塔耶夫斯基方程的准周期解。研究证明,存在一个广泛的 "非共振 "集合 G ⊂ R 3 \mathcal {G}\subset \mathbb {R}^3 ,这样对于 \mathcal {G} 中的每一个 \vv k\ 都有一个近似接近于平面波 Ae^{i\langle \vv {k},\vv {x}\rangle } 的解,因为 |\vv k|\to \infty ,给定 A A 足够小。
Solutions of Gross–Pitaevskii equation with periodic potential in dimension three
Quasiperiodic solutions of the Gross–Pitaevskii equation with a periodic potential in dimension three are studied. It is proved that there is an extensive “nonresonant” set G⊂R3\mathcal {G}\subset \mathbb {R}^3 such that for every \vv k\in \mathcal {G} there is a solution asymptotically close to a plane wave Ae^{i\langle \vv {k},\vv {x}\rangle } as |\vv k|\to \infty , given AA is sufficiently small.
期刊介绍:
This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.