索波列夫空间中高阶导数的尖锐估计值

IF 0.2 Q4 MATHEMATICS
T. A. Garmanova, I. A. Sheipak
{"title":"索波列夫空间中高阶导数的尖锐估计值","authors":"T. A. Garmanova, I. A. Sheipak","doi":"10.3103/s0027132224700013","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The paper describes the splines <span>\\(Q_{n,k}(x,a)\\)</span>, which define the relations <span>\\(y^{(k)}(a)=\\int\\limits_{0}^{1}y^{(n)}(x)Q^{(n)}_{n,k}(x,a)dx\\)</span> for an arbitrary point <span>\\(a\\in(0;1)\\)</span> and an arbitrary function <span>\\(y\\in\\mathring{W}^{n}_{p}[0;1]\\)</span>. The connection of the minimization of the norm <span>\\(\\|Q^{(n)}_{n,k}\\|_{L_{p^{\\prime}}[0;1]}\\)</span> (<span>\\(1/p+1/p^{\\prime}=1\\)</span>) by parameter <span>\\(a\\)</span> with the problem of best estimates for derivatives <span>\\(|y^{(k)}(a)|\\leqslant A_{n,k,p}(a)\\|y^{(n)}\\|_{L_{p}[0;1]}\\)</span>, and also with the problem of finding the exact embedding constants of the Sobolev space <span>\\(\\mathring{W}^{n}_{p}[0;1]\\)</span> into the space <span>\\(\\mathring{W}^{k}_{\\infty}[0;1]\\)</span>, <span>\\(n\\in\\mathbb{N}\\)</span>, <span>\\(0\\leqslant k\\leqslant n-1\\)</span>. Exact embedding constants are found for all <span>\\(n\\in\\mathbb{N}\\)</span>, <span>\\(k=n-1\\)</span> for <span>\\(p=1\\)</span> and for <span>\\(p=\\infty\\)</span>.</p>","PeriodicalId":42963,"journal":{"name":"Moscow University Mathematics Bulletin","volume":"20 1","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sharp Estimates of High-Order Derivatives in Sobolev Spaces\",\"authors\":\"T. A. Garmanova, I. A. Sheipak\",\"doi\":\"10.3103/s0027132224700013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>The paper describes the splines <span>\\\\(Q_{n,k}(x,a)\\\\)</span>, which define the relations <span>\\\\(y^{(k)}(a)=\\\\int\\\\limits_{0}^{1}y^{(n)}(x)Q^{(n)}_{n,k}(x,a)dx\\\\)</span> for an arbitrary point <span>\\\\(a\\\\in(0;1)\\\\)</span> and an arbitrary function <span>\\\\(y\\\\in\\\\mathring{W}^{n}_{p}[0;1]\\\\)</span>. The connection of the minimization of the norm <span>\\\\(\\\\|Q^{(n)}_{n,k}\\\\|_{L_{p^{\\\\prime}}[0;1]}\\\\)</span> (<span>\\\\(1/p+1/p^{\\\\prime}=1\\\\)</span>) by parameter <span>\\\\(a\\\\)</span> with the problem of best estimates for derivatives <span>\\\\(|y^{(k)}(a)|\\\\leqslant A_{n,k,p}(a)\\\\|y^{(n)}\\\\|_{L_{p}[0;1]}\\\\)</span>, and also with the problem of finding the exact embedding constants of the Sobolev space <span>\\\\(\\\\mathring{W}^{n}_{p}[0;1]\\\\)</span> into the space <span>\\\\(\\\\mathring{W}^{k}_{\\\\infty}[0;1]\\\\)</span>, <span>\\\\(n\\\\in\\\\mathbb{N}\\\\)</span>, <span>\\\\(0\\\\leqslant k\\\\leqslant n-1\\\\)</span>. Exact embedding constants are found for all <span>\\\\(n\\\\in\\\\mathbb{N}\\\\)</span>, <span>\\\\(k=n-1\\\\)</span> for <span>\\\\(p=1\\\\)</span> and for <span>\\\\(p=\\\\infty\\\\)</span>.</p>\",\"PeriodicalId\":42963,\"journal\":{\"name\":\"Moscow University Mathematics Bulletin\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moscow University Mathematics Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3103/s0027132224700013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow University Mathematics Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s0027132224700013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Abstract The paper describes the splines \(Q_{n,k}(x,a)\), which define the relations\(y^{(k)}(a)=\int\limits_{0}^{1}y^{(n)}(x)Q^{(n)}_{n,k}(x,a)dx\) for an arbitrary point \(a\in(0. 1)\)和 an arbitrary function \(y\in\mathring{W}^{n}_{p}[0;1]\);1))和任意函数(y\in\mathring{W}^{n}_{p}[0;1]\).最小化规范 \(\|Q^{(n)}_{n,k}\|_{L_{p^{\prime}}[0;参数 \(a\) 的 (\(1/p+1/p^{\prime}=1\)) 与导数 \(|y^{(k)}(a)|leqslant A_{n,k,p}(a)\|y^{(n)}\|{L_{p}[0;1]})的问题,以及找到索波列夫空间 \(\mathring{W}^{n}_{p}[0;1]\) 到空间 \(\mathring{W}^{k}_{infty}[0;1]\), \(n\in\mathbb{N}\), \(0\leqslant k\leqslant n-1\) 的精确嵌入常数的问题。对于所有的(n\in\mathbb{N}\)、(k=n-1\)的(p=1\)和(p=\infty\),都可以找到精确的嵌入常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Sharp Estimates of High-Order Derivatives in Sobolev Spaces

Sharp Estimates of High-Order Derivatives in Sobolev Spaces

Abstract

The paper describes the splines \(Q_{n,k}(x,a)\), which define the relations \(y^{(k)}(a)=\int\limits_{0}^{1}y^{(n)}(x)Q^{(n)}_{n,k}(x,a)dx\) for an arbitrary point \(a\in(0;1)\) and an arbitrary function \(y\in\mathring{W}^{n}_{p}[0;1]\). The connection of the minimization of the norm \(\|Q^{(n)}_{n,k}\|_{L_{p^{\prime}}[0;1]}\) (\(1/p+1/p^{\prime}=1\)) by parameter \(a\) with the problem of best estimates for derivatives \(|y^{(k)}(a)|\leqslant A_{n,k,p}(a)\|y^{(n)}\|_{L_{p}[0;1]}\), and also with the problem of finding the exact embedding constants of the Sobolev space \(\mathring{W}^{n}_{p}[0;1]\) into the space \(\mathring{W}^{k}_{\infty}[0;1]\), \(n\in\mathbb{N}\), \(0\leqslant k\leqslant n-1\). Exact embedding constants are found for all \(n\in\mathbb{N}\), \(k=n-1\) for \(p=1\) and for \(p=\infty\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
25.00%
发文量
13
期刊介绍: Moscow University Mathematics Bulletin  is the journal of scientific publications reflecting the most important areas of mathematical studies at Lomonosov Moscow State University. The journal covers research in theory of functions, functional analysis, algebra, geometry, topology, ordinary and partial differential equations, probability theory, stochastic processes, mathematical statistics, optimal control, number theory, mathematical logic, theory of algorithms, discrete mathematics and computational mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信