自结合无约束块雅可比矩阵的绿矩阵项的估计值

IF 0.7 4区 数学 Q2 MATHEMATICS
S. Naboko, S. Simonov
{"title":"自结合无约束块雅可比矩阵的绿矩阵项的估计值","authors":"S. Naboko, S. Simonov","doi":"10.1090/spmj/1800","DOIUrl":null,"url":null,"abstract":"<p>In a wide class of block Jacobi matrices, the norms of Green matrix (resolvent) entries are estimated. This estimate depends on the rate of growth of the norms of the off-diagonal entries and on the distance from the spectral parameter to the essential spectrum if the latter is nonempty. The sharpness of this estimate is shown by an example.</p>","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":"24 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimates of Green matrix entries of selfadjoint unbounded block Jacobi matrices\",\"authors\":\"S. Naboko, S. Simonov\",\"doi\":\"10.1090/spmj/1800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In a wide class of block Jacobi matrices, the norms of Green matrix (resolvent) entries are estimated. This estimate depends on the rate of growth of the norms of the off-diagonal entries and on the distance from the spectral parameter to the essential spectrum if the latter is nonempty. The sharpness of this estimate is shown by an example.</p>\",\"PeriodicalId\":51162,\"journal\":{\"name\":\"St Petersburg Mathematical Journal\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"St Petersburg Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/spmj/1800\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"St Petersburg Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/spmj/1800","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在一大类块雅可比矩阵中,对绿色矩阵(解析)项的规范进行了估算。该估计值取决于对角线外条目规范的增长率,以及光谱参数与本质谱的距离(如果后者非空)。我们通过一个例子来说明这种估计的精确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimates of Green matrix entries of selfadjoint unbounded block Jacobi matrices

In a wide class of block Jacobi matrices, the norms of Green matrix (resolvent) entries are estimated. This estimate depends on the rate of growth of the norms of the off-diagonal entries and on the distance from the spectral parameter to the essential spectrum if the latter is nonempty. The sharpness of this estimate is shown by an example.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
12.50%
发文量
52
审稿时长
>12 weeks
期刊介绍: This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信