双光子不对称量子拉比模型的大特征值行为

IF 0.7 4区 数学 Q2 MATHEMATICS
A. Boutet de Monvel, M. Charif, L. Zielinski
{"title":"双光子不对称量子拉比模型的大特征值行为","authors":"A. Boutet de Monvel, M. Charif, L. Zielinski","doi":"10.1090/spmj/1793","DOIUrl":null,"url":null,"abstract":"<p>The asymptotic behavior of large eigenvalues is studied for the two-photon quantum Rabi model with a finite bias. It is proved that the spectrum of this Hamiltonian model consists of two eigenvalue sequences <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-brace upper E Subscript n Superscript plus Baseline right-brace Subscript n equals 0 Superscript normal infinity\"> <mml:semantics> <mml:mrow> <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo> <mml:msubsup> <mml:mi>E</mml:mi> <mml:mi>n</mml:mi> <mml:mo>+</mml:mo> </mml:msubsup> <mml:msubsup> <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:mrow> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> </mml:mrow> </mml:msubsup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\lbrace E_n^+\\rbrace _{n=0}^{\\infty }</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-brace upper E Subscript n Superscript minus Baseline right-brace Subscript n equals 0 Superscript normal infinity\"> <mml:semantics> <mml:mrow> <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo> <mml:msubsup> <mml:mi>E</mml:mi> <mml:mi>n</mml:mi> <mml:mo>−<!-- − --></mml:mo> </mml:msubsup> <mml:msubsup> <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:mrow> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> </mml:mrow> </mml:msubsup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\lbrace E_n^-\\rbrace _{n=0}^{\\infty }</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and their large <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding=\"application/x-tex\">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> asymptotic behavior with error term <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper O left-parenthesis n Superscript negative 1 slash 2 Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"normal\">O</mml:mi> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mi>n</mml:mi> <mml:mrow> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\operatorname {O}(n^{-1/2})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is described. The principal tool is the method of near-similarity of operators introduced by G. V. Rozenblum and developed in works of J. Janas, S. Naboko, and E. A. Yanovich (Tur).</p>","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":"42 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Behavior of large eigenvalues for the two-photon asymmetric quantum Rabi model\",\"authors\":\"A. Boutet de Monvel, M. Charif, L. Zielinski\",\"doi\":\"10.1090/spmj/1793\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The asymptotic behavior of large eigenvalues is studied for the two-photon quantum Rabi model with a finite bias. It is proved that the spectrum of this Hamiltonian model consists of two eigenvalue sequences <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-brace upper E Subscript n Superscript plus Baseline right-brace Subscript n equals 0 Superscript normal infinity\\\"> <mml:semantics> <mml:mrow> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">{</mml:mo> <mml:msubsup> <mml:mi>E</mml:mi> <mml:mi>n</mml:mi> <mml:mo>+</mml:mo> </mml:msubsup> <mml:msubsup> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">}</mml:mo> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:mrow> <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi> </mml:mrow> </mml:msubsup> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\lbrace E_n^+\\\\rbrace _{n=0}^{\\\\infty }</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-brace upper E Subscript n Superscript minus Baseline right-brace Subscript n equals 0 Superscript normal infinity\\\"> <mml:semantics> <mml:mrow> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">{</mml:mo> <mml:msubsup> <mml:mi>E</mml:mi> <mml:mi>n</mml:mi> <mml:mo>−<!-- − --></mml:mo> </mml:msubsup> <mml:msubsup> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">}</mml:mo> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:mrow> <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi> </mml:mrow> </mml:msubsup> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\lbrace E_n^-\\\\rbrace _{n=0}^{\\\\infty }</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and their large <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"n\\\"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> asymptotic behavior with error term <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper O left-parenthesis n Superscript negative 1 slash 2 Baseline right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\\\"normal\\\">O</mml:mi> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:msup> <mml:mi>n</mml:mi> <mml:mrow> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\operatorname {O}(n^{-1/2})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is described. The principal tool is the method of near-similarity of operators introduced by G. V. Rozenblum and developed in works of J. Janas, S. Naboko, and E. A. Yanovich (Tur).</p>\",\"PeriodicalId\":51162,\"journal\":{\"name\":\"St Petersburg Mathematical Journal\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"St Petersburg Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/spmj/1793\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"St Petersburg Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/spmj/1793","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了具有有限偏置的双光子量子拉比模型的大特征值渐近行为。研究证明,该哈密顿模型的谱由两个特征值序列组成 { E n + } n = 0 ∞ \lbrace E_n^+\rbrace _{n=0}^{\infty } , { E n - } n = 0 ∞ \lbrace E_n^+\rbrace _{n=0}^{\infty } 。 { E n - } n = 0 ∞ \lbrace E_n^-\rbrace _{n=0}^{\infty } ,以及它们的大 n n 渐近线。 描述了它们的大 n n 渐近行为,误差项为 O ( n - 1 / 2 ) \operatorname {O}(n^{-1/2}) 。主要工具是由 G. V. Rozenblum 引入并在 J. Janas、S. Naboko 和 E. A. Yanovich (Tur) 的著作中发展的算子近似方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Behavior of large eigenvalues for the two-photon asymmetric quantum Rabi model

The asymptotic behavior of large eigenvalues is studied for the two-photon quantum Rabi model with a finite bias. It is proved that the spectrum of this Hamiltonian model consists of two eigenvalue sequences { E n + } n = 0 \lbrace E_n^+\rbrace _{n=0}^{\infty } , { E n } n = 0 \lbrace E_n^-\rbrace _{n=0}^{\infty } , and their large n n asymptotic behavior with error term O ( n 1 / 2 ) \operatorname {O}(n^{-1/2}) is described. The principal tool is the method of near-similarity of operators introduced by G. V. Rozenblum and developed in works of J. Janas, S. Naboko, and E. A. Yanovich (Tur).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
12.50%
发文量
52
审稿时长
>12 weeks
期刊介绍: This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信