{"title":"半轴上薛定谔算子的完全非自相接性","authors":"C. Fischbacher, S. Naboko, I. Wood","doi":"10.1090/spmj/1802","DOIUrl":null,"url":null,"abstract":"<p>This note is devoted to the study of complete nonselfadjointness for all maximally dissipative extensions of a Schrödinger operator on a half-line with dissipative bounded potential and dissipative boundary condition. It is shown that all maximally dissipative extensions that preserve the differential expression are completely nonselfadjoint. However, it is possible for maximally dissipative extensions to have a one-dimensional reducing subspace on which the operator is selfadjoint. A characterization of these extensions and the corresponding subspaces is given, accompanied by a specific example.</p>","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complete nonselfadjointness for Schrödinger operators on the semi-axis\",\"authors\":\"C. Fischbacher, S. Naboko, I. Wood\",\"doi\":\"10.1090/spmj/1802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This note is devoted to the study of complete nonselfadjointness for all maximally dissipative extensions of a Schrödinger operator on a half-line with dissipative bounded potential and dissipative boundary condition. It is shown that all maximally dissipative extensions that preserve the differential expression are completely nonselfadjoint. However, it is possible for maximally dissipative extensions to have a one-dimensional reducing subspace on which the operator is selfadjoint. A characterization of these extensions and the corresponding subspaces is given, accompanied by a specific example.</p>\",\"PeriodicalId\":51162,\"journal\":{\"name\":\"St Petersburg Mathematical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"St Petersburg Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/spmj/1802\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"St Petersburg Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/spmj/1802","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Complete nonselfadjointness for Schrödinger operators on the semi-axis
This note is devoted to the study of complete nonselfadjointness for all maximally dissipative extensions of a Schrödinger operator on a half-line with dissipative bounded potential and dissipative boundary condition. It is shown that all maximally dissipative extensions that preserve the differential expression are completely nonselfadjoint. However, it is possible for maximally dissipative extensions to have a one-dimensional reducing subspace on which the operator is selfadjoint. A characterization of these extensions and the corresponding subspaces is given, accompanied by a specific example.
期刊介绍:
This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.