图形最小特征值的组合上限

IF 0.5 4区 数学 Q3 MATHEMATICS
Aryan Esmailpour, Sara Saeedi Madani, Dariush Kiani
{"title":"图形最小特征值的组合上限","authors":"Aryan Esmailpour,&nbsp;Sara Saeedi Madani,&nbsp;Dariush Kiani","doi":"10.1007/s00013-024-01998-8","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>G</i> be a graph, and let <span>\\(\\lambda (G)\\)</span> denote the smallest eigenvalue of <i>G</i>. First, we provide an upper bound for <span>\\(\\lambda (G)\\)</span> based on induced bipartite subgraphs of <i>G</i>. Consequently, we extract two other upper bounds, one relying on the average degrees of induced bipartite subgraphs and a more explicit one in terms of the chromatic number and the independence number of <i>G</i>. In particular, motivated by our bounds, we introduce two graph invariants that are of interest on their own. Finally, special attention goes to the investigation of the sharpness of our bounds in various classes of graphs as well as the comparison with an existing well-known upper bound.\n</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"123 1","pages":"29 - 38"},"PeriodicalIF":0.5000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combinatorial upper bounds for the smallest eigenvalue of a graph\",\"authors\":\"Aryan Esmailpour,&nbsp;Sara Saeedi Madani,&nbsp;Dariush Kiani\",\"doi\":\"10.1007/s00013-024-01998-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <i>G</i> be a graph, and let <span>\\\\(\\\\lambda (G)\\\\)</span> denote the smallest eigenvalue of <i>G</i>. First, we provide an upper bound for <span>\\\\(\\\\lambda (G)\\\\)</span> based on induced bipartite subgraphs of <i>G</i>. Consequently, we extract two other upper bounds, one relying on the average degrees of induced bipartite subgraphs and a more explicit one in terms of the chromatic number and the independence number of <i>G</i>. In particular, motivated by our bounds, we introduce two graph invariants that are of interest on their own. Finally, special attention goes to the investigation of the sharpness of our bounds in various classes of graphs as well as the comparison with an existing well-known upper bound.\\n</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":\"123 1\",\"pages\":\"29 - 38\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-024-01998-8\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-01998-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 G 是一个图,让 \(\lambda (G)\) 表示 G 的最小特征值。首先,我们基于 G 的诱导双方子图为 \(\lambda (G)\) 提供一个上界。因此,我们提取了另外两个上界,一个依赖于诱导双方子图的平均度数,另一个则是基于 G 的色度数和独立性数的更明确的上界。最后,我们还特别关注在不同类别的图中对我们的界限的尖锐性的研究,以及与现有的著名上限的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combinatorial upper bounds for the smallest eigenvalue of a graph

Let G be a graph, and let \(\lambda (G)\) denote the smallest eigenvalue of G. First, we provide an upper bound for \(\lambda (G)\) based on induced bipartite subgraphs of G. Consequently, we extract two other upper bounds, one relying on the average degrees of induced bipartite subgraphs and a more explicit one in terms of the chromatic number and the independence number of G. In particular, motivated by our bounds, we introduce two graph invariants that are of interest on their own. Finally, special attention goes to the investigation of the sharpness of our bounds in various classes of graphs as well as the comparison with an existing well-known upper bound.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信