Cu-As-S 系统中的相关系和铜砷硫化物的热力学性质

IF 1.5 4区 材料科学 Q4 CHEMISTRY, PHYSICAL
Leyla F. Mashadiyeva, Dunya M. Babanly, Ziver T. Hasanova, Yusif A. Yusibov, Mahammad B. Babanly
{"title":"Cu-As-S 系统中的相关系和铜砷硫化物的热力学性质","authors":"Leyla F. Mashadiyeva,&nbsp;Dunya M. Babanly,&nbsp;Ziver T. Hasanova,&nbsp;Yusif A. Yusibov,&nbsp;Mahammad B. Babanly","doi":"10.1007/s11669-024-01115-w","DOIUrl":null,"url":null,"abstract":"<div><p>Here, a complete phase equilibria picture in the Cu-As-S system was obtained by experimental study of carefully crystallized via long-term thermal annealing alloys by means of methods of differential thermal analysis and powder x-ray diffraction, as well as using the available literature data. The projection of the liquidus surface, the isothermal section at 300 K, and some vertical sections of the phase diagram are presented and discussed. The fields of primary crystallization of phases, types, and coordinates of invariant and monovariant phase equilibria are determined. The presented phase diagram reflects four ternary compounds Cu<sub>3</sub>AsS<sub>4</sub>, Cu<sub>12</sub>As<sub>4</sub>S<sub>13</sub>, Cu<sub>6</sub>As<sub>4</sub>S<sub>9</sub>, and CuAsS, which are synthetic analogues of natural copper-arsenic sulfide minerals. Particular attention is paid to the Cu<sub>2</sub>S-As<sub>2</sub>S<sub>3</sub> section. It is shown that this section, in contrast to the literature data, is not quasi-binary. The thermodynamic data for copper-arsenic sulfides, previously obtained by the authors by the electromotive force method with Cu<sub>4</sub>RbCl<sub>3</sub>I<sub>2</sub> solid electrolyte, have also been revised. Experimental data on the partial thermodynamic functions of copper in some phase regions of the Cu-As-S system were processed taking into account the constructed new version of the solid-phase equilibria diagram and updated data on the standard thermodynamic functions of formation and standard entropies of the ternary compounds Cu<sub>3</sub>AsS<sub>4</sub>, Cu<sub>12</sub>As<sub>4</sub>S<sub>13</sub>, Cu<sub>6</sub>As<sub>4</sub>S<sub>9</sub>, and CuAsS were obtained.</p></div>","PeriodicalId":657,"journal":{"name":"Journal of Phase Equilibria and Diffusion","volume":"45 3","pages":"567 - 582"},"PeriodicalIF":1.5000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phase Relations in the Cu-As-S System and Thermodynamic Properties of Copper-Arsenic Sulfides\",\"authors\":\"Leyla F. Mashadiyeva,&nbsp;Dunya M. Babanly,&nbsp;Ziver T. Hasanova,&nbsp;Yusif A. Yusibov,&nbsp;Mahammad B. Babanly\",\"doi\":\"10.1007/s11669-024-01115-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Here, a complete phase equilibria picture in the Cu-As-S system was obtained by experimental study of carefully crystallized via long-term thermal annealing alloys by means of methods of differential thermal analysis and powder x-ray diffraction, as well as using the available literature data. The projection of the liquidus surface, the isothermal section at 300 K, and some vertical sections of the phase diagram are presented and discussed. The fields of primary crystallization of phases, types, and coordinates of invariant and monovariant phase equilibria are determined. The presented phase diagram reflects four ternary compounds Cu<sub>3</sub>AsS<sub>4</sub>, Cu<sub>12</sub>As<sub>4</sub>S<sub>13</sub>, Cu<sub>6</sub>As<sub>4</sub>S<sub>9</sub>, and CuAsS, which are synthetic analogues of natural copper-arsenic sulfide minerals. Particular attention is paid to the Cu<sub>2</sub>S-As<sub>2</sub>S<sub>3</sub> section. It is shown that this section, in contrast to the literature data, is not quasi-binary. The thermodynamic data for copper-arsenic sulfides, previously obtained by the authors by the electromotive force method with Cu<sub>4</sub>RbCl<sub>3</sub>I<sub>2</sub> solid electrolyte, have also been revised. Experimental data on the partial thermodynamic functions of copper in some phase regions of the Cu-As-S system were processed taking into account the constructed new version of the solid-phase equilibria diagram and updated data on the standard thermodynamic functions of formation and standard entropies of the ternary compounds Cu<sub>3</sub>AsS<sub>4</sub>, Cu<sub>12</sub>As<sub>4</sub>S<sub>13</sub>, Cu<sub>6</sub>As<sub>4</sub>S<sub>9</sub>, and CuAsS were obtained.</p></div>\",\"PeriodicalId\":657,\"journal\":{\"name\":\"Journal of Phase Equilibria and Diffusion\",\"volume\":\"45 3\",\"pages\":\"567 - 582\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Phase Equilibria and Diffusion\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11669-024-01115-w\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Phase Equilibria and Diffusion","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11669-024-01115-w","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在此,我们通过差热分析和粉末 X 射线衍射方法,并利用现有的文献数据,对经过长期热退火精心结晶的合金进行了实验研究,从而获得了 Cu-As-S 系统的完整相平衡图。本文介绍并讨论了液面的投影、300 K 时的等温截面以及相图的一些垂直截面。确定了各相的初级结晶场、类型以及不变相和单变相平衡的坐标。所展示的相图反映了四种三元化合物 Cu3AsS4、Cu12As4S13、Cu6As4S9 和 CuAsS,它们是天然铜砷硫化物矿物的合成类似物。Cu2S-As2S3 部分受到特别关注。研究表明,与文献数据不同,该部分不是准二元的。此外,还修订了作者以前用 Cu4RbCl3I2 固体电解质通过电动力学方法获得的铜砷硫化物热力学数据。考虑到构建的新版固相平衡图,对 Cu-As-S 系统某些相区铜的部分热力学函数的实验数据进行了处理,并获得了三元化合物 Cu3AsS4、Cu12As4S13、Cu6As4S9 和 CuAsS 的标准形成热力学函数和标准熵的最新数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Phase Relations in the Cu-As-S System and Thermodynamic Properties of Copper-Arsenic Sulfides

Phase Relations in the Cu-As-S System and Thermodynamic Properties of Copper-Arsenic Sulfides

Phase Relations in the Cu-As-S System and Thermodynamic Properties of Copper-Arsenic Sulfides

Here, a complete phase equilibria picture in the Cu-As-S system was obtained by experimental study of carefully crystallized via long-term thermal annealing alloys by means of methods of differential thermal analysis and powder x-ray diffraction, as well as using the available literature data. The projection of the liquidus surface, the isothermal section at 300 K, and some vertical sections of the phase diagram are presented and discussed. The fields of primary crystallization of phases, types, and coordinates of invariant and monovariant phase equilibria are determined. The presented phase diagram reflects four ternary compounds Cu3AsS4, Cu12As4S13, Cu6As4S9, and CuAsS, which are synthetic analogues of natural copper-arsenic sulfide minerals. Particular attention is paid to the Cu2S-As2S3 section. It is shown that this section, in contrast to the literature data, is not quasi-binary. The thermodynamic data for copper-arsenic sulfides, previously obtained by the authors by the electromotive force method with Cu4RbCl3I2 solid electrolyte, have also been revised. Experimental data on the partial thermodynamic functions of copper in some phase regions of the Cu-As-S system were processed taking into account the constructed new version of the solid-phase equilibria diagram and updated data on the standard thermodynamic functions of formation and standard entropies of the ternary compounds Cu3AsS4, Cu12As4S13, Cu6As4S9, and CuAsS were obtained.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Phase Equilibria and Diffusion
Journal of Phase Equilibria and Diffusion 工程技术-材料科学:综合
CiteScore
2.50
自引率
7.10%
发文量
70
审稿时长
1 months
期刊介绍: The most trusted journal for phase equilibria and thermodynamic research, ASM International''s Journal of Phase Equilibria and Diffusion features critical phase diagram evaluations on scientifically and industrially important alloy systems, authored by international experts. The Journal of Phase Equilibria and Diffusion is critically reviewed and contains basic and applied research results, a survey of current literature and other pertinent articles. The journal covers the significance of diagrams as well as new research techniques, equipment, data evaluation, nomenclature, presentation and other aspects of phase diagram preparation and use. Content includes information on phenomena such as kinetic control of equilibrium, coherency effects, impurity effects, and thermodynamic and crystallographic characteristics. The journal updates systems previously published in the Bulletin of Alloy Phase Diagrams as new data are discovered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信