{"title":"黑洞蒸发的末日","authors":"Shao-Jiang Wang","doi":"10.1209/0295-5075/ad3b36","DOIUrl":null,"url":null,"abstract":"By assuming simultaneously the unitarity of the Hawking evaporation and the universality of Bekenstein entropy bound as well as the validity of cosmic censorship conjecture, we find that the black hole evaporation rate could evolve from the usual inverse square law in black hole mass into a constant evaporation rate near the end of the Hawking evaporation before quantum gravity could come into play, inferring a slightly longer lifetime for lighter black holes.","PeriodicalId":11738,"journal":{"name":"EPL","volume":"45 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The doomsday of black hole evaporation\",\"authors\":\"Shao-Jiang Wang\",\"doi\":\"10.1209/0295-5075/ad3b36\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By assuming simultaneously the unitarity of the Hawking evaporation and the universality of Bekenstein entropy bound as well as the validity of cosmic censorship conjecture, we find that the black hole evaporation rate could evolve from the usual inverse square law in black hole mass into a constant evaporation rate near the end of the Hawking evaporation before quantum gravity could come into play, inferring a slightly longer lifetime for lighter black holes.\",\"PeriodicalId\":11738,\"journal\":{\"name\":\"EPL\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPL\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1209/0295-5075/ad3b36\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPL","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1209/0295-5075/ad3b36","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
By assuming simultaneously the unitarity of the Hawking evaporation and the universality of Bekenstein entropy bound as well as the validity of cosmic censorship conjecture, we find that the black hole evaporation rate could evolve from the usual inverse square law in black hole mass into a constant evaporation rate near the end of the Hawking evaporation before quantum gravity could come into play, inferring a slightly longer lifetime for lighter black holes.
期刊介绍:
General physics – physics of elementary particles and fields – nuclear physics – atomic, molecular and optical physics – classical areas of phenomenology – physics of gases, plasmas and electrical discharges – condensed matter – cross-disciplinary physics and related areas of science and technology.
Letters submitted to EPL should contain new results, ideas, concepts, experimental methods, theoretical treatments, including those with application potential and be of broad interest and importance to one or several sections of the physics community. The presentation should satisfy the specialist, yet remain understandable to the researchers in other fields through a suitable, clearly written introduction and conclusion (if appropriate).
EPL also publishes Comments on Letters previously published in the Journal.