用边长为 $$n^{-1/2-\epsilon }$ 的等边三角形完美包装等边三角形

IF 0.6 3区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Janusz Januszewski, Łukasz Zielonka
{"title":"用边长为 $$n^{-1/2-\\epsilon }$ 的等边三角形完美包装等边三角形","authors":"Janusz Januszewski, Łukasz Zielonka","doi":"10.1007/s00454-024-00654-w","DOIUrl":null,"url":null,"abstract":"<p>Equilateral triangles of sidelengths 1, <span>\\(2^{-t}\\)</span>, <span>\\(3^{-t}\\)</span>, <span>\\(4^{-t},\\ldots \\ \\)</span> can be packed perfectly into an equilateral triangle, provided that <span>\\(\\ 1/2&lt;t \\le 37/72\\)</span>. Moreover, for <i>t</i> slightly greater than 1/2, squares of sidelengths 1, <span>\\(2^{-t}\\)</span>, <span>\\(3^{-t}\\)</span>, <span>\\(4^{-t},\\ldots \\ \\)</span> can be packed perfectly into a square <span>\\(S_t\\)</span> in such a way that some squares have a side parallel to a diagonal of <span>\\(S_t\\)</span> and the remaining squares have a side parallel to a side of <span>\\(S_t\\)</span>.</p>","PeriodicalId":50574,"journal":{"name":"Discrete & Computational Geometry","volume":"40 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Perfectly Packing an Equilateral Triangle by Equilateral Triangles of Sidelengths $$n^{-1/2-\\\\epsilon }$$\",\"authors\":\"Janusz Januszewski, Łukasz Zielonka\",\"doi\":\"10.1007/s00454-024-00654-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Equilateral triangles of sidelengths 1, <span>\\\\(2^{-t}\\\\)</span>, <span>\\\\(3^{-t}\\\\)</span>, <span>\\\\(4^{-t},\\\\ldots \\\\ \\\\)</span> can be packed perfectly into an equilateral triangle, provided that <span>\\\\(\\\\ 1/2&lt;t \\\\le 37/72\\\\)</span>. Moreover, for <i>t</i> slightly greater than 1/2, squares of sidelengths 1, <span>\\\\(2^{-t}\\\\)</span>, <span>\\\\(3^{-t}\\\\)</span>, <span>\\\\(4^{-t},\\\\ldots \\\\ \\\\)</span> can be packed perfectly into a square <span>\\\\(S_t\\\\)</span> in such a way that some squares have a side parallel to a diagonal of <span>\\\\(S_t\\\\)</span> and the remaining squares have a side parallel to a side of <span>\\\\(S_t\\\\)</span>.</p>\",\"PeriodicalId\":50574,\"journal\":{\"name\":\"Discrete & Computational Geometry\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete & Computational Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-024-00654-w\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Computational Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-024-00654-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

边长为 1、(2^{-t}\)、(3^{-t}\)、(4^{-t},\ldots \)的等边三角形可以完美地组合成一个等边三角形,前提是(\1/2<t \le 37/72)。此外,对于t略大于1/2的情况,边长为1、(2^{-t}\)、(3^{-t}\)、(4^{-t},\ldots \)的正方形可以完美地打包成一个正方形(S_t\),使得一些正方形的边平行于(S_t\)的对角线,其余的正方形的边平行于(S_t\)的边。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Perfectly Packing an Equilateral Triangle by Equilateral Triangles of Sidelengths $$n^{-1/2-\epsilon }$$

Perfectly Packing an Equilateral Triangle by Equilateral Triangles of Sidelengths $$n^{-1/2-\epsilon }$$

Equilateral triangles of sidelengths 1, \(2^{-t}\), \(3^{-t}\), \(4^{-t},\ldots \ \) can be packed perfectly into an equilateral triangle, provided that \(\ 1/2<t \le 37/72\). Moreover, for t slightly greater than 1/2, squares of sidelengths 1, \(2^{-t}\), \(3^{-t}\), \(4^{-t},\ldots \ \) can be packed perfectly into a square \(S_t\) in such a way that some squares have a side parallel to a diagonal of \(S_t\) and the remaining squares have a side parallel to a side of \(S_t\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete & Computational Geometry
Discrete & Computational Geometry 数学-计算机:理论方法
CiteScore
1.80
自引率
12.50%
发文量
99
审稿时长
6-12 weeks
期刊介绍: Discrete & Computational Geometry (DCG) is an international journal of mathematics and computer science, covering a broad range of topics in which geometry plays a fundamental role. It publishes papers on such topics as configurations and arrangements, spatial subdivision, packing, covering, and tiling, geometric complexity, polytopes, point location, geometric probability, geometric range searching, combinatorial and computational topology, probabilistic techniques in computational geometry, geometric graphs, geometry of numbers, and motion planning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信