关于一类耦合非线性粘弹性基尔霍夫方程变指数:解的全局存在性、爆炸、增长和衰减

IF 1.7 4区 数学 Q1 Mathematics
Abdelbaki Choucha, Mohamed Haiour, Salah Boulaaras
{"title":"关于一类耦合非线性粘弹性基尔霍夫方程变指数:解的全局存在性、爆炸、增长和衰减","authors":"Abdelbaki Choucha, Mohamed Haiour, Salah Boulaaras","doi":"10.1186/s13661-024-01864-0","DOIUrl":null,"url":null,"abstract":"In this work, we consider a quasilinear system of viscoelastic equations with dispersion, source, and variable exponents. Under suitable assumptions on the initial data and the relaxation functions, we obtained that the solution of the system is global and bounded. Next, the blow-up is proved with negative initial energy. After that, the exponential growth of solutions is showed with positive initial energy, and by using an integral inequality due to Komornik, the general decay result is obtained in the case of absence of the source term.","PeriodicalId":49228,"journal":{"name":"Boundary Value Problems","volume":"133 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a class of a coupled nonlinear viscoelastic Kirchhoff equations variable-exponents: global existence, blow up, growth and decay of solutions\",\"authors\":\"Abdelbaki Choucha, Mohamed Haiour, Salah Boulaaras\",\"doi\":\"10.1186/s13661-024-01864-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we consider a quasilinear system of viscoelastic equations with dispersion, source, and variable exponents. Under suitable assumptions on the initial data and the relaxation functions, we obtained that the solution of the system is global and bounded. Next, the blow-up is proved with negative initial energy. After that, the exponential growth of solutions is showed with positive initial energy, and by using an integral inequality due to Komornik, the general decay result is obtained in the case of absence of the source term.\",\"PeriodicalId\":49228,\"journal\":{\"name\":\"Boundary Value Problems\",\"volume\":\"133 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boundary Value Problems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1186/s13661-024-01864-0\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boundary Value Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13661-024-01864-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们考虑了一个具有分散、源和可变指数的粘弹性准线性方程组。在初始数据和松弛函数的适当假设下,我们得到了该系统的解是全局和有界的。接着,证明了负初始能量下的炸毁。之后,利用正初始能量证明了解的指数增长,并通过使用 Komornik 提出的积分不等式,得到了无源项情况下的一般衰减结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a class of a coupled nonlinear viscoelastic Kirchhoff equations variable-exponents: global existence, blow up, growth and decay of solutions
In this work, we consider a quasilinear system of viscoelastic equations with dispersion, source, and variable exponents. Under suitable assumptions on the initial data and the relaxation functions, we obtained that the solution of the system is global and bounded. Next, the blow-up is proved with negative initial energy. After that, the exponential growth of solutions is showed with positive initial energy, and by using an integral inequality due to Komornik, the general decay result is obtained in the case of absence of the source term.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Boundary Value Problems
Boundary Value Problems MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.00
自引率
5.90%
发文量
83
审稿时长
4 months
期刊介绍: The main aim of Boundary Value Problems is to provide a forum to promote, encourage, and bring together various disciplines which use the theory, methods, and applications of boundary value problems. Boundary Value Problems will publish very high quality research articles on boundary value problems for ordinary, functional, difference, elliptic, parabolic, and hyperbolic differential equations. Articles on singular, free, and ill-posed boundary value problems, and other areas of abstract and concrete analysis are welcome. In addition to regular research articles, Boundary Value Problems will publish review articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信