{"title":"潜缩位置模型的变量推理","authors":"Xian Yao Gwee, Isobel Claire Gormley, Michael Fop","doi":"10.1002/sta4.685","DOIUrl":null,"url":null,"abstract":"The latent position model (LPM) is a popular method used in network data analysis where nodes are assumed to be positioned in a ‐dimensional latent space. The latent shrinkage position model (LSPM) is an extension of the LPM which automatically determines the number of effective dimensions of the latent space via a Bayesian nonparametric shrinkage prior. However, the LSPM's reliance on Markov chain Monte Carlo for inference, while rigorous, is computationally expensive, making it challenging to scale to networks with large numbers of nodes. We introduce a variational inference approach for the LSPM, aiming to reduce computational demands while retaining the model's ability to intrinsically determine the number of effective latent dimensions. The performance of the variational LSPM is illustrated through simulation studies and its application to real‐world network data. To promote wider adoption and ease of implementation, we also provide open‐source code.","PeriodicalId":56159,"journal":{"name":"Stat","volume":"5 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variational inference for the latent shrinkage position model\",\"authors\":\"Xian Yao Gwee, Isobel Claire Gormley, Michael Fop\",\"doi\":\"10.1002/sta4.685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The latent position model (LPM) is a popular method used in network data analysis where nodes are assumed to be positioned in a ‐dimensional latent space. The latent shrinkage position model (LSPM) is an extension of the LPM which automatically determines the number of effective dimensions of the latent space via a Bayesian nonparametric shrinkage prior. However, the LSPM's reliance on Markov chain Monte Carlo for inference, while rigorous, is computationally expensive, making it challenging to scale to networks with large numbers of nodes. We introduce a variational inference approach for the LSPM, aiming to reduce computational demands while retaining the model's ability to intrinsically determine the number of effective latent dimensions. The performance of the variational LSPM is illustrated through simulation studies and its application to real‐world network data. To promote wider adoption and ease of implementation, we also provide open‐source code.\",\"PeriodicalId\":56159,\"journal\":{\"name\":\"Stat\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stat\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/sta4.685\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stat","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/sta4.685","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Variational inference for the latent shrinkage position model
The latent position model (LPM) is a popular method used in network data analysis where nodes are assumed to be positioned in a ‐dimensional latent space. The latent shrinkage position model (LSPM) is an extension of the LPM which automatically determines the number of effective dimensions of the latent space via a Bayesian nonparametric shrinkage prior. However, the LSPM's reliance on Markov chain Monte Carlo for inference, while rigorous, is computationally expensive, making it challenging to scale to networks with large numbers of nodes. We introduce a variational inference approach for the LSPM, aiming to reduce computational demands while retaining the model's ability to intrinsically determine the number of effective latent dimensions. The performance of the variational LSPM is illustrated through simulation studies and its application to real‐world network data. To promote wider adoption and ease of implementation, we also provide open‐source code.
StatDecision Sciences-Statistics, Probability and Uncertainty
CiteScore
1.10
自引率
0.00%
发文量
85
期刊介绍:
Stat is an innovative electronic journal for the rapid publication of novel and topical research results, publishing compact articles of the highest quality in all areas of statistical endeavour. Its purpose is to provide a means of rapid sharing of important new theoretical, methodological and applied research. Stat is a joint venture between the International Statistical Institute and Wiley-Blackwell.
Stat is characterised by:
• Speed - a high-quality review process that aims to reach a decision within 20 days of submission.
• Concision - a maximum article length of 10 pages of text, not including references.
• Supporting materials - inclusion of electronic supporting materials including graphs, video, software, data and images.
• Scope - addresses all areas of statistics and interdisciplinary areas.
Stat is a scientific journal for the international community of statisticians and researchers and practitioners in allied quantitative disciplines.