潜缩位置模型的变量推理

IF 0.7 4区 数学 Q3 STATISTICS & PROBABILITY
Stat Pub Date : 2024-05-09 DOI:10.1002/sta4.685
Xian Yao Gwee, Isobel Claire Gormley, Michael Fop
{"title":"潜缩位置模型的变量推理","authors":"Xian Yao Gwee, Isobel Claire Gormley, Michael Fop","doi":"10.1002/sta4.685","DOIUrl":null,"url":null,"abstract":"The latent position model (LPM) is a popular method used in network data analysis where nodes are assumed to be positioned in a ‐dimensional latent space. The latent shrinkage position model (LSPM) is an extension of the LPM which automatically determines the number of effective dimensions of the latent space via a Bayesian nonparametric shrinkage prior. However, the LSPM's reliance on Markov chain Monte Carlo for inference, while rigorous, is computationally expensive, making it challenging to scale to networks with large numbers of nodes. We introduce a variational inference approach for the LSPM, aiming to reduce computational demands while retaining the model's ability to intrinsically determine the number of effective latent dimensions. The performance of the variational LSPM is illustrated through simulation studies and its application to real‐world network data. To promote wider adoption and ease of implementation, we also provide open‐source code.","PeriodicalId":56159,"journal":{"name":"Stat","volume":"5 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variational inference for the latent shrinkage position model\",\"authors\":\"Xian Yao Gwee, Isobel Claire Gormley, Michael Fop\",\"doi\":\"10.1002/sta4.685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The latent position model (LPM) is a popular method used in network data analysis where nodes are assumed to be positioned in a ‐dimensional latent space. The latent shrinkage position model (LSPM) is an extension of the LPM which automatically determines the number of effective dimensions of the latent space via a Bayesian nonparametric shrinkage prior. However, the LSPM's reliance on Markov chain Monte Carlo for inference, while rigorous, is computationally expensive, making it challenging to scale to networks with large numbers of nodes. We introduce a variational inference approach for the LSPM, aiming to reduce computational demands while retaining the model's ability to intrinsically determine the number of effective latent dimensions. The performance of the variational LSPM is illustrated through simulation studies and its application to real‐world network data. To promote wider adoption and ease of implementation, we also provide open‐source code.\",\"PeriodicalId\":56159,\"journal\":{\"name\":\"Stat\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stat\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/sta4.685\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stat","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/sta4.685","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

潜在位置模型(LPM)是网络数据分析中常用的一种方法,它假定节点位于一维潜在空间中。潜在收缩位置模型(LSPM)是 LPM 的扩展,它通过贝叶斯非参数收缩先验自动确定潜在空间的有效维数。然而,LSPM 依靠马尔科夫链蒙特卡洛进行推理,虽然严谨,但计算成本高昂,使其难以扩展到具有大量节点的网络。我们为 LSPM 引入了一种变异推理方法,旨在减少计算需求,同时保留模型内在确定有效潜维数的能力。通过模拟研究及其在真实世界网络数据中的应用,说明了变异 LSPM 的性能。为了促进更广泛的应用和便于实施,我们还提供了开放源代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variational inference for the latent shrinkage position model
The latent position model (LPM) is a popular method used in network data analysis where nodes are assumed to be positioned in a ‐dimensional latent space. The latent shrinkage position model (LSPM) is an extension of the LPM which automatically determines the number of effective dimensions of the latent space via a Bayesian nonparametric shrinkage prior. However, the LSPM's reliance on Markov chain Monte Carlo for inference, while rigorous, is computationally expensive, making it challenging to scale to networks with large numbers of nodes. We introduce a variational inference approach for the LSPM, aiming to reduce computational demands while retaining the model's ability to intrinsically determine the number of effective latent dimensions. The performance of the variational LSPM is illustrated through simulation studies and its application to real‐world network data. To promote wider adoption and ease of implementation, we also provide open‐source code.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stat
Stat Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
1.10
自引率
0.00%
发文量
85
期刊介绍: Stat is an innovative electronic journal for the rapid publication of novel and topical research results, publishing compact articles of the highest quality in all areas of statistical endeavour. Its purpose is to provide a means of rapid sharing of important new theoretical, methodological and applied research. Stat is a joint venture between the International Statistical Institute and Wiley-Blackwell. Stat is characterised by: • Speed - a high-quality review process that aims to reach a decision within 20 days of submission. • Concision - a maximum article length of 10 pages of text, not including references. • Supporting materials - inclusion of electronic supporting materials including graphs, video, software, data and images. • Scope - addresses all areas of statistics and interdisciplinary areas. Stat is a scientific journal for the international community of statisticians and researchers and practitioners in allied quantitative disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信