一类张量序列的最大和最小 H 特征值的收敛性分析

IF 2.4 3区 数学 Q1 MATHEMATICS
Zhaofeng Lan, Jianxun Liu, Xianzhen Jiang
{"title":"一类张量序列的最大和最小 H 特征值的收敛性分析","authors":"Zhaofeng Lan, Jianxun Liu, Xianzhen Jiang","doi":"10.1007/s12190-024-02096-2","DOIUrl":null,"url":null,"abstract":"<p>This paper considers the convergence analysis of the H-eigenvalues for a class of real symmetric and convergent tensor sequences. We first establish convergence results of some sequences of points. Then we study the behaviors of the H-eigenvalues and H-eigenvectors of the convergent tensor sequence. In particular, we obtain the convergence properties of the largest and smallest H-eigenvalues of the tensor sequence. Eventually, the corresponding numerical results are presented to verify our theoretical findings.</p>","PeriodicalId":15034,"journal":{"name":"Journal of Applied Mathematics and Computing","volume":"16 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergence analysis of the largest and smallest H-eigenvalues for a class of tensor sequences\",\"authors\":\"Zhaofeng Lan, Jianxun Liu, Xianzhen Jiang\",\"doi\":\"10.1007/s12190-024-02096-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper considers the convergence analysis of the H-eigenvalues for a class of real symmetric and convergent tensor sequences. We first establish convergence results of some sequences of points. Then we study the behaviors of the H-eigenvalues and H-eigenvectors of the convergent tensor sequence. In particular, we obtain the convergence properties of the largest and smallest H-eigenvalues of the tensor sequence. Eventually, the corresponding numerical results are presented to verify our theoretical findings.</p>\",\"PeriodicalId\":15034,\"journal\":{\"name\":\"Journal of Applied Mathematics and Computing\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mathematics and Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s12190-024-02096-2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics and Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12190-024-02096-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究一类实对称收敛张量序列的 H 特征值的收敛分析。我们首先建立了一些点序列的收敛结果。然后,我们研究收敛张量序列的 H 特征值和 H 特征向量的行为。特别是,我们得到了张量序列最大和最小 H 特征值的收敛特性。最后,我们给出了相应的数值结果,以验证我们的理论发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence analysis of the largest and smallest H-eigenvalues for a class of tensor sequences

This paper considers the convergence analysis of the H-eigenvalues for a class of real symmetric and convergent tensor sequences. We first establish convergence results of some sequences of points. Then we study the behaviors of the H-eigenvalues and H-eigenvectors of the convergent tensor sequence. In particular, we obtain the convergence properties of the largest and smallest H-eigenvalues of the tensor sequence. Eventually, the corresponding numerical results are presented to verify our theoretical findings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Mathematics and Computing
Journal of Applied Mathematics and Computing Mathematics-Computational Mathematics
CiteScore
4.20
自引率
4.50%
发文量
131
期刊介绍: JAMC is a broad based journal covering all branches of computational or applied mathematics with special encouragement to researchers in theoretical computer science and mathematical computing. Major areas, such as numerical analysis, discrete optimization, linear and nonlinear programming, theory of computation, control theory, theory of algorithms, computational logic, applied combinatorics, coding theory, cryptograhics, fuzzy theory with applications, differential equations with applications are all included. A large variety of scientific problems also necessarily involve Algebra, Analysis, Geometry, Probability and Statistics and so on. The journal welcomes research papers in all branches of mathematics which have some bearing on the application to scientific problems, including papers in the areas of Actuarial Science, Mathematical Biology, Mathematical Economics and Finance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信