巴拿赫网格中的邓福德-佩蒂斯(Dunford-Pettis-Type)互不关联特性

IF 0.6 4区 数学 Q3 MATHEMATICS
Geraldo Botelho, José Lucas P Luiz, Vinícius C C Miranda
{"title":"巴拿赫网格中的邓福德-佩蒂斯(Dunford-Pettis-Type)互不关联特性","authors":"Geraldo Botelho, José Lucas P Luiz, Vinícius C C Miranda","doi":"10.1093/qmath/haae024","DOIUrl":null,"url":null,"abstract":"New characterizations of the disjoint Dunford–Pettis property of order p (disjoint DPPp) are proved and applied to show that a Banach lattice of cotype p has the disjoint DPPp whenever its dual has this property. The disjoint Dunford–Pettis$^*$ property of order p (disjoint $DP^*P_p$) is thoroughly investigated. Close connections with the positive Schur property of order p, with the disjoint DPPp, with the p-weak $DP^*$ property and with the positive $DP^*$ property of order p are established. In a final section, we study the polynomial versions of the disjoint DPPp and of the disjoint $DP^*P_p$.","PeriodicalId":54522,"journal":{"name":"Quarterly Journal of Mathematics","volume":"17 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Disjoint Dunford–Pettis-Type Properties in Banach Lattices\",\"authors\":\"Geraldo Botelho, José Lucas P Luiz, Vinícius C C Miranda\",\"doi\":\"10.1093/qmath/haae024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"New characterizations of the disjoint Dunford–Pettis property of order p (disjoint DPPp) are proved and applied to show that a Banach lattice of cotype p has the disjoint DPPp whenever its dual has this property. The disjoint Dunford–Pettis$^*$ property of order p (disjoint $DP^*P_p$) is thoroughly investigated. Close connections with the positive Schur property of order p, with the disjoint DPPp, with the p-weak $DP^*$ property and with the positive $DP^*$ property of order p are established. In a final section, we study the polynomial versions of the disjoint DPPp and of the disjoint $DP^*P_p$.\",\"PeriodicalId\":54522,\"journal\":{\"name\":\"Quarterly Journal of Mathematics\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/qmath/haae024\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/qmath/haae024","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文证明并应用了阶 p 的邓福德-佩蒂斯不相交属性(DPPp 不相交)的新特征,以说明只要对偶具有该属性,阶 p 的巴拿赫网格就具有 DPPp 不相交属性。阶 p 的不相交邓福德-佩蒂斯$^*$ 性质(不相交 $DP^*P_p$)得到了深入研究。我们建立了阶 p 的正舒尔性质、不相交 DPPp、p 弱 $DP^*$ 性质以及阶 p 的正 $DP^*$ 性质之间的密切联系。在最后一节中,我们研究了多项式版本的不相交 DPPp 和不相交 $DP^*P_p$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Disjoint Dunford–Pettis-Type Properties in Banach Lattices
New characterizations of the disjoint Dunford–Pettis property of order p (disjoint DPPp) are proved and applied to show that a Banach lattice of cotype p has the disjoint DPPp whenever its dual has this property. The disjoint Dunford–Pettis$^*$ property of order p (disjoint $DP^*P_p$) is thoroughly investigated. Close connections with the positive Schur property of order p, with the disjoint DPPp, with the p-weak $DP^*$ property and with the positive $DP^*$ property of order p are established. In a final section, we study the polynomial versions of the disjoint DPPp and of the disjoint $DP^*P_p$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
36
审稿时长
6-12 weeks
期刊介绍: The Quarterly Journal of Mathematics publishes original contributions to pure mathematics. All major areas of pure mathematics are represented on the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信