论高斯超几何函数对数的绝对单调性

IF 0.7 4区 数学 Q2 MATHEMATICS
Jiahui Wu, Tiehong Zhao
{"title":"论高斯超几何函数对数的绝对单调性","authors":"Jiahui Wu, Tiehong Zhao","doi":"10.1007/s41980-024-00889-6","DOIUrl":null,"url":null,"abstract":"<p>It has been shown in Yang and Tian (Acta Math Sci 42B(3):847–864, 2022) that the function <span>\\(x\\mapsto -\\frac{d}{dx}\\log {\\big [(1-x)^p{{\\,\\mathrm{{\\mathcal {K}}}\\,}}(\\sqrt{x})\\big ]}\\)</span> is absolutely monotonic on (0, 1) if and only if <span>\\(p\\ge 1/4\\)</span>, where <span>\\({{\\,\\mathrm{{\\mathcal {K}}}\\,}}(r)\\)</span> is the complete elliptic integral of the first kind defined on (0, 1). This result, in this paper, will be extended to the Gaussian hypergeometric function, more precisely, the absolutely monotonic properties of <span>\\(x\\mapsto \\log {\\big [(1-x)^s{_2F_1}(a,b;c;x)\\big ]}\\)</span> will be studied. As applications, several inequalities involving the ratio of Gaussian hypergeometric function and the generalized Grötzch ring function are established.</p>","PeriodicalId":9395,"journal":{"name":"Bulletin of The Iranian Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Absolute Monotonicity of the Logarithmic of Gaussian Hypergeometric Function\",\"authors\":\"Jiahui Wu, Tiehong Zhao\",\"doi\":\"10.1007/s41980-024-00889-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>It has been shown in Yang and Tian (Acta Math Sci 42B(3):847–864, 2022) that the function <span>\\\\(x\\\\mapsto -\\\\frac{d}{dx}\\\\log {\\\\big [(1-x)^p{{\\\\,\\\\mathrm{{\\\\mathcal {K}}}\\\\,}}(\\\\sqrt{x})\\\\big ]}\\\\)</span> is absolutely monotonic on (0, 1) if and only if <span>\\\\(p\\\\ge 1/4\\\\)</span>, where <span>\\\\({{\\\\,\\\\mathrm{{\\\\mathcal {K}}}\\\\,}}(r)\\\\)</span> is the complete elliptic integral of the first kind defined on (0, 1). This result, in this paper, will be extended to the Gaussian hypergeometric function, more precisely, the absolutely monotonic properties of <span>\\\\(x\\\\mapsto \\\\log {\\\\big [(1-x)^s{_2F_1}(a,b;c;x)\\\\big ]}\\\\)</span> will be studied. As applications, several inequalities involving the ratio of Gaussian hypergeometric function and the generalized Grötzch ring function are established.</p>\",\"PeriodicalId\":9395,\"journal\":{\"name\":\"Bulletin of The Iranian Mathematical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of The Iranian Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s41980-024-00889-6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of The Iranian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s41980-024-00889-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Yang and Tian (Acta Math Sci 42B(3):847-864, 2022)证明了函数 (x\mapsto -\frac{d}{dx}log {\big [(1-x)^p{\,\mathrm{\mathcal {K}}}\,}}(\sqrt{x})\big ]} )在(0、1) 上是绝对单调的,当且仅当\(p\ge 1/4\), 其中 \({{\,\mathrm{{\mathcal {K}}}\,}}(r)\) 是定义在 (0, 1) 上的第一类完全椭圆积分。本文将把这一结果扩展到高斯超几何函数,更确切地说,将研究 \(x\mapsto \log {\big [(1-x)^s{_2F_1}(a,b;c;x)\big ]}) 的绝对单调性。作为应用,建立了几个涉及高斯超几何函数和广义格罗兹环函数之比的不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On the Absolute Monotonicity of the Logarithmic of Gaussian Hypergeometric Function

On the Absolute Monotonicity of the Logarithmic of Gaussian Hypergeometric Function

It has been shown in Yang and Tian (Acta Math Sci 42B(3):847–864, 2022) that the function \(x\mapsto -\frac{d}{dx}\log {\big [(1-x)^p{{\,\mathrm{{\mathcal {K}}}\,}}(\sqrt{x})\big ]}\) is absolutely monotonic on (0, 1) if and only if \(p\ge 1/4\), where \({{\,\mathrm{{\mathcal {K}}}\,}}(r)\) is the complete elliptic integral of the first kind defined on (0, 1). This result, in this paper, will be extended to the Gaussian hypergeometric function, more precisely, the absolutely monotonic properties of \(x\mapsto \log {\big [(1-x)^s{_2F_1}(a,b;c;x)\big ]}\) will be studied. As applications, several inequalities involving the ratio of Gaussian hypergeometric function and the generalized Grötzch ring function are established.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bulletin of The Iranian Mathematical Society
Bulletin of The Iranian Mathematical Society Mathematics-General Mathematics
CiteScore
1.40
自引率
0.00%
发文量
64
期刊介绍: The Bulletin of the Iranian Mathematical Society (BIMS) publishes original research papers as well as survey articles on a variety of hot topics from distinguished mathematicians. Research papers presented comprise of innovative contributions while expository survey articles feature important results that appeal to a broad audience. Articles are expected to address active research topics and are required to cite existing (including recent) relevant literature appropriately. Papers are critically reviewed on the basis of quality in its exposition, brevity, potential applications, motivation, value and originality of the results. The BIMS takes a high standard policy against any type plagiarism. The editorial board is devoted to solicit expert referees for a fast and unbiased review process.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信