双边际最优运输情况下 GenCol 算法的收敛性证明

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Gero Friesecke, Maximilian Penka
{"title":"双边际最优运输情况下 GenCol 算法的收敛性证明","authors":"Gero Friesecke, Maximilian Penka","doi":"10.1090/mcom/3968","DOIUrl":null,"url":null,"abstract":"<p>The recently introduced Genetic Column Generation (GenCol) algorithm has been numerically observed to efficiently and accurately compute high-dimensional optimal transport (OT) plans for general multi-marginal problems, but theoretical results on the algorithm have hitherto been lacking. The algorithm solves the OT linear program on a dynamically updated low-dimensional submanifold consisting of sparse plans. The submanifold dimension exceeds the sparse support of optimal plans only by a fixed factor <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"beta\"> <mml:semantics> <mml:mi>β<!-- β --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\beta</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Here we prove that for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"beta greater-than-or-equal-to 2\"> <mml:semantics> <mml:mrow> <mml:mi>β<!-- β --></mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\beta \\geq 2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and in the two-marginal case, GenCol always converges to an exact solution, for arbitrary costs and marginals. The proof relies on the concept of c-cyclical monotonicity. As an offshoot, GenCol rigorously reduces the data complexity of numerically solving two-marginal OT problems from <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis script l squared right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mi>ℓ<!-- ℓ --></mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">O(\\ell ^2)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> to <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis script l right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>ℓ<!-- ℓ --></mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">O(\\ell )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> without any loss in accuracy, where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script l\"> <mml:semantics> <mml:mi>ℓ<!-- ℓ --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\ell</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the number of discretization points for a single marginal. At the end of the paper we also present some insights into the convergence behavior in the multi-marginal case.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergence proof for the GenCol algorithm in the case of two-marginal optimal transport\",\"authors\":\"Gero Friesecke, Maximilian Penka\",\"doi\":\"10.1090/mcom/3968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The recently introduced Genetic Column Generation (GenCol) algorithm has been numerically observed to efficiently and accurately compute high-dimensional optimal transport (OT) plans for general multi-marginal problems, but theoretical results on the algorithm have hitherto been lacking. The algorithm solves the OT linear program on a dynamically updated low-dimensional submanifold consisting of sparse plans. The submanifold dimension exceeds the sparse support of optimal plans only by a fixed factor <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"beta\\\"> <mml:semantics> <mml:mi>β<!-- β --></mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\beta</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Here we prove that for <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"beta greater-than-or-equal-to 2\\\"> <mml:semantics> <mml:mrow> <mml:mi>β<!-- β --></mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\beta \\\\geq 2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and in the two-marginal case, GenCol always converges to an exact solution, for arbitrary costs and marginals. The proof relies on the concept of c-cyclical monotonicity. As an offshoot, GenCol rigorously reduces the data complexity of numerically solving two-marginal OT problems from <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper O left-parenthesis script l squared right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:msup> <mml:mi>ℓ<!-- ℓ --></mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">O(\\\\ell ^2)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> to <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper O left-parenthesis script l right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>ℓ<!-- ℓ --></mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">O(\\\\ell )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> without any loss in accuracy, where <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script l\\\"> <mml:semantics> <mml:mi>ℓ<!-- ℓ --></mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\ell</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the number of discretization points for a single marginal. At the end of the paper we also present some insights into the convergence behavior in the multi-marginal case.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3968\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/mcom/3968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

最近推出的遗传列生成(GenCol)算法已被数值观测到,可以高效、准确地计算一般多边际问题的高维最优运输(OT)计划,但迄今为止还缺乏有关该算法的理论成果。该算法在由稀疏计划组成的动态更新的低维子平面上求解 OT 线性程序。子平面的维度仅以固定系数 β \beta 的方式超出最优计划的稀疏支持。在这里,我们将证明对于 β ≥ 2 \beta \geq 2 和双边际情况,GenCol 总是收敛于精确解,适用于任意成本和边际。证明依赖于 c 周期单调性的概念。作为一个分支,GenCol 严格地将数值求解双边际 OT 问题的数据复杂度从 O ( ℓ 2 ) O(\ell ^2) 降低到 O ( ℓ ) O(\ell),并且没有任何精度损失,其中 ℓ \ell 是单个边际的离散点数。在本文的最后,我们还提出了对多边际情况下收敛行为的一些见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence proof for the GenCol algorithm in the case of two-marginal optimal transport

The recently introduced Genetic Column Generation (GenCol) algorithm has been numerically observed to efficiently and accurately compute high-dimensional optimal transport (OT) plans for general multi-marginal problems, but theoretical results on the algorithm have hitherto been lacking. The algorithm solves the OT linear program on a dynamically updated low-dimensional submanifold consisting of sparse plans. The submanifold dimension exceeds the sparse support of optimal plans only by a fixed factor β \beta . Here we prove that for β 2 \beta \geq 2 and in the two-marginal case, GenCol always converges to an exact solution, for arbitrary costs and marginals. The proof relies on the concept of c-cyclical monotonicity. As an offshoot, GenCol rigorously reduces the data complexity of numerically solving two-marginal OT problems from O ( 2 ) O(\ell ^2) to O ( ) O(\ell ) without any loss in accuracy, where \ell is the number of discretization points for a single marginal. At the end of the paper we also present some insights into the convergence behavior in the multi-marginal case.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信