超极化 13C-MRI 的 K-means 聚类确定肾细胞癌的瘤内灌注/代谢错配是最高分级的最佳预测指标

Ines Horvat-Menih, Alixander S Khan, Mary A McLean, Joao Duarte, Eva Serrao, Stephan Ursprung, Joshua D Kaggie, Andrew B Gill, Andrew N Priest, Mireia Crispin-Ortuzar, Anne Y Warren, Sarah J Welsh, Thomas J Mitchell, Grant D Stewart, Ferdia A Gallagher
{"title":"超极化 13C-MRI 的 K-means 聚类确定肾细胞癌的瘤内灌注/代谢错配是最高分级的最佳预测指标","authors":"Ines Horvat-Menih, Alixander S Khan, Mary A McLean, Joao Duarte, Eva Serrao, Stephan Ursprung, Joshua D Kaggie, Andrew B Gill, Andrew N Priest, Mireia Crispin-Ortuzar, Anne Y Warren, Sarah J Welsh, Thomas J Mitchell, Grant D Stewart, Ferdia A Gallagher","doi":"10.1101/2024.05.06.24306829","DOIUrl":null,"url":null,"abstract":"<strong>Purpose</strong> Conventional renal mass biopsy approaches are inaccurate, potentially leading to undergrading. This study explored using hyperpolarised [1-<sup>13</sup>C]pyruvate MRI (HP <sup>13</sup>C-MRI) to identify the most aggressive areas within the tumour of patients with clear cell renal cell carcinoma (ccRCC).","PeriodicalId":501358,"journal":{"name":"medRxiv - Radiology and Imaging","volume":"160 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"K-means clustering of hyperpolarised 13C-MRI identifies intratumoural perfusion/metabolism mismatch in renal cell carcinoma as best predictor of highest grade\",\"authors\":\"Ines Horvat-Menih, Alixander S Khan, Mary A McLean, Joao Duarte, Eva Serrao, Stephan Ursprung, Joshua D Kaggie, Andrew B Gill, Andrew N Priest, Mireia Crispin-Ortuzar, Anne Y Warren, Sarah J Welsh, Thomas J Mitchell, Grant D Stewart, Ferdia A Gallagher\",\"doi\":\"10.1101/2024.05.06.24306829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong>Purpose</strong> Conventional renal mass biopsy approaches are inaccurate, potentially leading to undergrading. This study explored using hyperpolarised [1-<sup>13</sup>C]pyruvate MRI (HP <sup>13</sup>C-MRI) to identify the most aggressive areas within the tumour of patients with clear cell renal cell carcinoma (ccRCC).\",\"PeriodicalId\":501358,\"journal\":{\"name\":\"medRxiv - Radiology and Imaging\",\"volume\":\"160 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv - Radiology and Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.05.06.24306829\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Radiology and Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.05.06.24306829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的 传统的肾脏肿块活检方法并不准确,有可能导致低估病情。本研究探索使用超极化[1-13C]丙酮酸磁共振成像(HP 13C-MRI)来确定透明细胞肾细胞癌(ccRCC)患者肿瘤内最具侵袭性的区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
K-means clustering of hyperpolarised 13C-MRI identifies intratumoural perfusion/metabolism mismatch in renal cell carcinoma as best predictor of highest grade
Purpose Conventional renal mass biopsy approaches are inaccurate, potentially leading to undergrading. This study explored using hyperpolarised [1-13C]pyruvate MRI (HP 13C-MRI) to identify the most aggressive areas within the tumour of patients with clear cell renal cell carcinoma (ccRCC).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信