椭圆上解析函数的高斯-雅可比正交误差范围

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Hiroshi Sugiura, Takemitsu Hasegawa
{"title":"椭圆上解析函数的高斯-雅可比正交误差范围","authors":"Hiroshi Sugiura, Takemitsu Hasegawa","doi":"10.1090/mcom/3977","DOIUrl":null,"url":null,"abstract":"<p>For the Gauss–Jacobi quadrature on <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-bracket negative 1 comma 1 right-bracket\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">[</mml:mo> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">]</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">[-1,1]</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, the location is estimated where the kernel of the error functional for functions analytic on an ellipse and its interior in the complex plane attains its maximum modulus. For the Jacobi weight <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis 1 minus t right-parenthesis Superscript alpha Baseline left-parenthesis 1 plus t right-parenthesis Superscript beta\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>−</mml:mo> <mml:mi>t</mml:mi> <mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mi>α</mml:mi> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:mi>t</mml:mi> <mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mi>β</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(1-t)^\\alpha (1+t)^\\beta</mml:annotation> </mml:semantics> </mml:math> </inline-formula> (<inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"alpha greater-than negative 1\"> <mml:semantics> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\alpha &gt;-1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"beta greater-than negative 1\"> <mml:semantics> <mml:mrow> <mml:mi>β</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\beta &gt;-1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>) except for the Gegenbauer weight (<inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"alpha equals beta\"> <mml:semantics> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>=</mml:mo> <mml:mi>β</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\alpha =\\beta</mml:annotation> </mml:semantics> </mml:math> </inline-formula>), the location is the intersection point of the ellipse with the real axis in the complex plane. For the Gegenbauer weight, it is the intersection point(s) with either the real or the imaginary axis or other axes with angle <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"one fourth pi\"> <mml:semantics> <mml:mrow> <mml:mstyle displaystyle=\"false\" scriptlevel=\"0\"> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>4</mml:mn> </mml:mfrac> </mml:mstyle> <mml:mi>π</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\tfrac {1}{4}\\pi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"three fourths pi\"> <mml:semantics> <mml:mrow> <mml:mstyle displaystyle=\"false\" scriptlevel=\"0\"> <mml:mfrac> <mml:mn>3</mml:mn> <mml:mn>4</mml:mn> </mml:mfrac> </mml:mstyle> <mml:mi>π</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\tfrac {3}{4}\\pi</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Our results support the empirical results provided by Gautschi and Varga [SIAM J. Numer. Anal, 20 (1983), pp. 1170–1186] for the Jacobi weight, the Gegenbauer weight and the Legendre weight. The results obtained are also illustrated numerically.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Error bounds for Gauss–Jacobi quadrature of analytic functions on an ellipse\",\"authors\":\"Hiroshi Sugiura, Takemitsu Hasegawa\",\"doi\":\"10.1090/mcom/3977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For the Gauss–Jacobi quadrature on <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-bracket negative 1 comma 1 right-bracket\\\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\\\"false\\\">[</mml:mo> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\\\"false\\\">]</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">[-1,1]</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, the location is estimated where the kernel of the error functional for functions analytic on an ellipse and its interior in the complex plane attains its maximum modulus. For the Jacobi weight <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis 1 minus t right-parenthesis Superscript alpha Baseline left-parenthesis 1 plus t right-parenthesis Superscript beta\\\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>−</mml:mo> <mml:mi>t</mml:mi> <mml:msup> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mi>α</mml:mi> </mml:msup> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:mi>t</mml:mi> <mml:msup> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mi>β</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">(1-t)^\\\\alpha (1+t)^\\\\beta</mml:annotation> </mml:semantics> </mml:math> </inline-formula> (<inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"alpha greater-than negative 1\\\"> <mml:semantics> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\alpha &gt;-1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"beta greater-than negative 1\\\"> <mml:semantics> <mml:mrow> <mml:mi>β</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\beta &gt;-1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>) except for the Gegenbauer weight (<inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"alpha equals beta\\\"> <mml:semantics> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>=</mml:mo> <mml:mi>β</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\alpha =\\\\beta</mml:annotation> </mml:semantics> </mml:math> </inline-formula>), the location is the intersection point of the ellipse with the real axis in the complex plane. For the Gegenbauer weight, it is the intersection point(s) with either the real or the imaginary axis or other axes with angle <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"one fourth pi\\\"> <mml:semantics> <mml:mrow> <mml:mstyle displaystyle=\\\"false\\\" scriptlevel=\\\"0\\\"> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>4</mml:mn> </mml:mfrac> </mml:mstyle> <mml:mi>π</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\tfrac {1}{4}\\\\pi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"three fourths pi\\\"> <mml:semantics> <mml:mrow> <mml:mstyle displaystyle=\\\"false\\\" scriptlevel=\\\"0\\\"> <mml:mfrac> <mml:mn>3</mml:mn> <mml:mn>4</mml:mn> </mml:mfrac> </mml:mstyle> <mml:mi>π</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\tfrac {3}{4}\\\\pi</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Our results support the empirical results provided by Gautschi and Varga [SIAM J. Numer. Anal, 20 (1983), pp. 1170–1186] for the Jacobi weight, the Gegenbauer weight and the Legendre weight. The results obtained are also illustrated numerically.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3977\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/mcom/3977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

对于 [ - 1 , 1 ] [-1,1] 上的高斯-雅可比正交,在复平面内椭圆及其内部解析函数的误差函数核达到最大模的位置进行估计。对于雅可比权重 ( 1 - t ) α ( 1 + t ) β (1-t)^\alpha (1+t)^\beta ( α > - 1 \alpha >-1 , β > - 1 \beta >-1 ) 除了格根鲍尔权重 ( α = β \alpha =\beta ) 以外,位置都是椭圆与复平面实轴的交点。对于格根鲍尔权重,它是与实轴或虚轴或其他轴的交点,角度分别为 1 4 π \tfrac {1}{4}\pi 和 3 4 π \tfrac {3}{4}\pi 。我们的结果支持 Gautschi 和 Varga [SIAM J. Numer. Anal, 20 (1983), pp.本文还对所获得的结果进行了数值说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Error bounds for Gauss–Jacobi quadrature of analytic functions on an ellipse

For the Gauss–Jacobi quadrature on [ 1 , 1 ] [-1,1] , the location is estimated where the kernel of the error functional for functions analytic on an ellipse and its interior in the complex plane attains its maximum modulus. For the Jacobi weight ( 1 t ) α ( 1 + t ) β (1-t)^\alpha (1+t)^\beta ( α > 1 \alpha >-1 , β > 1 \beta >-1 ) except for the Gegenbauer weight ( α = β \alpha =\beta ), the location is the intersection point of the ellipse with the real axis in the complex plane. For the Gegenbauer weight, it is the intersection point(s) with either the real or the imaginary axis or other axes with angle 1 4 π \tfrac {1}{4}\pi and 3 4 π \tfrac {3}{4}\pi . Our results support the empirical results provided by Gautschi and Varga [SIAM J. Numer. Anal, 20 (1983), pp. 1170–1186] for the Jacobi weight, the Gegenbauer weight and the Legendre weight. The results obtained are also illustrated numerically.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信