{"title":"椭圆上解析函数的高斯-雅可比正交误差范围","authors":"Hiroshi Sugiura, Takemitsu Hasegawa","doi":"10.1090/mcom/3977","DOIUrl":null,"url":null,"abstract":"<p>For the Gauss–Jacobi quadrature on <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-bracket negative 1 comma 1 right-bracket\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">[</mml:mo> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">]</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">[-1,1]</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, the location is estimated where the kernel of the error functional for functions analytic on an ellipse and its interior in the complex plane attains its maximum modulus. For the Jacobi weight <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis 1 minus t right-parenthesis Superscript alpha Baseline left-parenthesis 1 plus t right-parenthesis Superscript beta\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>−</mml:mo> <mml:mi>t</mml:mi> <mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mi>α</mml:mi> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:mi>t</mml:mi> <mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mi>β</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(1-t)^\\alpha (1+t)^\\beta</mml:annotation> </mml:semantics> </mml:math> </inline-formula> (<inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"alpha greater-than negative 1\"> <mml:semantics> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>></mml:mo> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\alpha >-1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"beta greater-than negative 1\"> <mml:semantics> <mml:mrow> <mml:mi>β</mml:mi> <mml:mo>></mml:mo> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\beta >-1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>) except for the Gegenbauer weight (<inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"alpha equals beta\"> <mml:semantics> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>=</mml:mo> <mml:mi>β</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\alpha =\\beta</mml:annotation> </mml:semantics> </mml:math> </inline-formula>), the location is the intersection point of the ellipse with the real axis in the complex plane. For the Gegenbauer weight, it is the intersection point(s) with either the real or the imaginary axis or other axes with angle <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"one fourth pi\"> <mml:semantics> <mml:mrow> <mml:mstyle displaystyle=\"false\" scriptlevel=\"0\"> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>4</mml:mn> </mml:mfrac> </mml:mstyle> <mml:mi>π</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\tfrac {1}{4}\\pi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"three fourths pi\"> <mml:semantics> <mml:mrow> <mml:mstyle displaystyle=\"false\" scriptlevel=\"0\"> <mml:mfrac> <mml:mn>3</mml:mn> <mml:mn>4</mml:mn> </mml:mfrac> </mml:mstyle> <mml:mi>π</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\tfrac {3}{4}\\pi</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Our results support the empirical results provided by Gautschi and Varga [SIAM J. Numer. Anal, 20 (1983), pp. 1170–1186] for the Jacobi weight, the Gegenbauer weight and the Legendre weight. The results obtained are also illustrated numerically.</p>","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"39 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Error bounds for Gauss–Jacobi quadrature of analytic functions on an ellipse\",\"authors\":\"Hiroshi Sugiura, Takemitsu Hasegawa\",\"doi\":\"10.1090/mcom/3977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For the Gauss–Jacobi quadrature on <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-bracket negative 1 comma 1 right-bracket\\\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\\\"false\\\">[</mml:mo> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\\\"false\\\">]</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">[-1,1]</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, the location is estimated where the kernel of the error functional for functions analytic on an ellipse and its interior in the complex plane attains its maximum modulus. For the Jacobi weight <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis 1 minus t right-parenthesis Superscript alpha Baseline left-parenthesis 1 plus t right-parenthesis Superscript beta\\\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>−</mml:mo> <mml:mi>t</mml:mi> <mml:msup> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mi>α</mml:mi> </mml:msup> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:mi>t</mml:mi> <mml:msup> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mi>β</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">(1-t)^\\\\alpha (1+t)^\\\\beta</mml:annotation> </mml:semantics> </mml:math> </inline-formula> (<inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"alpha greater-than negative 1\\\"> <mml:semantics> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>></mml:mo> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\alpha >-1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"beta greater-than negative 1\\\"> <mml:semantics> <mml:mrow> <mml:mi>β</mml:mi> <mml:mo>></mml:mo> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\beta >-1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>) except for the Gegenbauer weight (<inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"alpha equals beta\\\"> <mml:semantics> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>=</mml:mo> <mml:mi>β</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\alpha =\\\\beta</mml:annotation> </mml:semantics> </mml:math> </inline-formula>), the location is the intersection point of the ellipse with the real axis in the complex plane. For the Gegenbauer weight, it is the intersection point(s) with either the real or the imaginary axis or other axes with angle <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"one fourth pi\\\"> <mml:semantics> <mml:mrow> <mml:mstyle displaystyle=\\\"false\\\" scriptlevel=\\\"0\\\"> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>4</mml:mn> </mml:mfrac> </mml:mstyle> <mml:mi>π</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\tfrac {1}{4}\\\\pi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"three fourths pi\\\"> <mml:semantics> <mml:mrow> <mml:mstyle displaystyle=\\\"false\\\" scriptlevel=\\\"0\\\"> <mml:mfrac> <mml:mn>3</mml:mn> <mml:mn>4</mml:mn> </mml:mfrac> </mml:mstyle> <mml:mi>π</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\tfrac {3}{4}\\\\pi</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Our results support the empirical results provided by Gautschi and Varga [SIAM J. Numer. Anal, 20 (1983), pp. 1170–1186] for the Jacobi weight, the Gegenbauer weight and the Legendre weight. The results obtained are also illustrated numerically.</p>\",\"PeriodicalId\":18456,\"journal\":{\"name\":\"Mathematics of Computation\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3977\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Computation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/mcom/3977","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Error bounds for Gauss–Jacobi quadrature of analytic functions on an ellipse
For the Gauss–Jacobi quadrature on [−1,1][-1,1], the location is estimated where the kernel of the error functional for functions analytic on an ellipse and its interior in the complex plane attains its maximum modulus. For the Jacobi weight (1−t)α(1+t)β(1-t)^\alpha (1+t)^\beta (α>−1\alpha >-1, β>−1\beta >-1) except for the Gegenbauer weight (α=β\alpha =\beta), the location is the intersection point of the ellipse with the real axis in the complex plane. For the Gegenbauer weight, it is the intersection point(s) with either the real or the imaginary axis or other axes with angle 14π\tfrac {1}{4}\pi and 34π\tfrac {3}{4}\pi. Our results support the empirical results provided by Gautschi and Varga [SIAM J. Numer. Anal, 20 (1983), pp. 1170–1186] for the Jacobi weight, the Gegenbauer weight and the Legendre weight. The results obtained are also illustrated numerically.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles of the highest quality in computational mathematics. Areas covered include numerical analysis, computational discrete mathematics, including number theory, algebra and combinatorics, and related fields such as stochastic numerical methods. Articles must be of significant computational interest and contain original and substantial mathematical analysis or development of computational methodology.