与磁力拟合提高了磁矩张势的可靠性

Alexey S. Kotykhov, Konstantin Gubaev, Vadim Sotskov, Christian Tantardini, Max Hodapp, Alexander V. Shapeev, Ivan S. Novikov
{"title":"与磁力拟合提高了磁矩张势的可靠性","authors":"Alexey S. Kotykhov, Konstantin Gubaev, Vadim Sotskov, Christian Tantardini, Max Hodapp, Alexander V. Shapeev, Ivan S. Novikov","doi":"arxiv-2405.07069","DOIUrl":null,"url":null,"abstract":"We propose a novel method for fitting machine-learning interatomic potentials\nwith magnetic degrees of freedom, namely, magnetic Moment Tensor Potentials\n(mMTP). The main feature of the methodology consists in fitting mMTP to\nmagnetic forces (negative derivatives of energies with respect to magnetic\nmoments) derived from spin-polarized density functional theory calculations. We\ntest our method on the bcc Fe-Al system with different composition.\nSpecifically, we calculate formation energies, equilibrium lattice parameter,\nand total cell magnetization. Our findings demonstrate a precise match between\nvalues calculated with mMTP and those obtained by DFT at zero temperature.\nAdditionally, using molecular dynamics, we estimate the finite temperature\nlattice parameter and capture the cell expansion as was previously revealed in\nexperiment. We demonstrate that mMTPs fitted to magnetic forces, increase the\nrelaxation reliability, which is the percent of successfully relaxed structures\n(i.e. with almost zero forces, stresses, and magnetic moments after the\noptimization of geometry). Eventually, we show that the proposed methodology\ncan provide an accurate and reliable mMTP with reduced number of\ncomputationally complex spin-polarized density functional theory calculations.","PeriodicalId":501211,"journal":{"name":"arXiv - PHYS - Other Condensed Matter","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fitting to magnetic forces improves the reliability of magnetic Moment Tensor Potentials\",\"authors\":\"Alexey S. Kotykhov, Konstantin Gubaev, Vadim Sotskov, Christian Tantardini, Max Hodapp, Alexander V. Shapeev, Ivan S. Novikov\",\"doi\":\"arxiv-2405.07069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel method for fitting machine-learning interatomic potentials\\nwith magnetic degrees of freedom, namely, magnetic Moment Tensor Potentials\\n(mMTP). The main feature of the methodology consists in fitting mMTP to\\nmagnetic forces (negative derivatives of energies with respect to magnetic\\nmoments) derived from spin-polarized density functional theory calculations. We\\ntest our method on the bcc Fe-Al system with different composition.\\nSpecifically, we calculate formation energies, equilibrium lattice parameter,\\nand total cell magnetization. Our findings demonstrate a precise match between\\nvalues calculated with mMTP and those obtained by DFT at zero temperature.\\nAdditionally, using molecular dynamics, we estimate the finite temperature\\nlattice parameter and capture the cell expansion as was previously revealed in\\nexperiment. We demonstrate that mMTPs fitted to magnetic forces, increase the\\nrelaxation reliability, which is the percent of successfully relaxed structures\\n(i.e. with almost zero forces, stresses, and magnetic moments after the\\noptimization of geometry). Eventually, we show that the proposed methodology\\ncan provide an accurate and reliable mMTP with reduced number of\\ncomputationally complex spin-polarized density functional theory calculations.\",\"PeriodicalId\":501211,\"journal\":{\"name\":\"arXiv - PHYS - Other Condensed Matter\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Other Condensed Matter\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.07069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Other Condensed Matter","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.07069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种拟合具有磁自由度的机器学习原子间势的新方法,即磁矩张量势(mMTP)。该方法的主要特点是将 mMTP 与自旋极化密度泛函理论计算得出的磁力(相对于磁矩的能量负导数)进行拟合。我们对不同成分的 bcc Fe-Al 体系进行了测试,特别是计算了形成能、平衡晶格参数和晶胞总磁化。我们的研究结果表明,用 mMTP 计算出的值与 DFT 在零温下得到的值精确匹配。此外,我们还利用分子动力学估算了有限温度晶格参数,并捕捉到了以前在实验中发现的晶胞膨胀现象。我们证明,与磁力相匹配的 mMTPs 提高了松弛可靠性,即成功松弛结构的百分比(即优化几何结构后,力、应力和磁矩几乎为零)。最终,我们证明了所提出的方法可以提供准确可靠的 mMTP,并减少了计算复杂的自旋极化密度泛函理论计算的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fitting to magnetic forces improves the reliability of magnetic Moment Tensor Potentials
We propose a novel method for fitting machine-learning interatomic potentials with magnetic degrees of freedom, namely, magnetic Moment Tensor Potentials (mMTP). The main feature of the methodology consists in fitting mMTP to magnetic forces (negative derivatives of energies with respect to magnetic moments) derived from spin-polarized density functional theory calculations. We test our method on the bcc Fe-Al system with different composition. Specifically, we calculate formation energies, equilibrium lattice parameter, and total cell magnetization. Our findings demonstrate a precise match between values calculated with mMTP and those obtained by DFT at zero temperature. Additionally, using molecular dynamics, we estimate the finite temperature lattice parameter and capture the cell expansion as was previously revealed in experiment. We demonstrate that mMTPs fitted to magnetic forces, increase the relaxation reliability, which is the percent of successfully relaxed structures (i.e. with almost zero forces, stresses, and magnetic moments after the optimization of geometry). Eventually, we show that the proposed methodology can provide an accurate and reliable mMTP with reduced number of computationally complex spin-polarized density functional theory calculations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信