{"title":"沙尘迁移事件期间阿拉伯海上空云微观物理原位观测数据","authors":"Sudarsan Bera, Sachin Patade, Thara Prabhakaran","doi":"10.1088/2515-7620/ad443d","DOIUrl":null,"url":null,"abstract":"The unique <italic toggle=\"yes\">in situ</italic> measurements of clouds and precipitation within the shallow and deep cumulus over the north-eastern Arabian Sea region during the Indian monsoon are illustrated in this study with a focus on droplet spectral parameters. The observational period showed a significant incursion of Arabian dust and the presence of giant cloud condensation nuclei (GCCN), modifying the cloud and precipitation spectral properties. Warm rain microphysics supported the mixed-phase development in these clouds and exhibited hydrometeors of snow, graupel and large aggregates as part of ice processes. Cloud base droplet number concentration is about 142 <inline-formula>\n<tex-math>\n<?CDATA $\\pm $?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mo>±</mml:mo></mml:math>\n<inline-graphic xlink:href=\"ercad443dieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> 79 cm<sup>−3</sup> which is one third of the cloud condensation nuclei (CCN) number concentration at 0.2% supersaturation. A rapid broadening of droplet size distribution (DSD) near to the cloud base was noted in contrast to polluted continental clouds. Relationship between the relative dispersion (<inline-formula>\n<tex-math>\n<?CDATA $\\varepsilon ;$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mi>ε</mml:mi><mml:mo>;</mml:mo></mml:math>\n<inline-graphic xlink:href=\"ercad443dieqn2.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> the ratio of DSD spectral width (<inline-formula>\n<tex-math>\n<?CDATA $\\sigma $?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mi>σ</mml:mi></mml:math>\n<inline-graphic xlink:href=\"ercad443dieqn3.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>) to mean radius (<inline-formula>\n<tex-math>\n<?CDATA ${r}_{m}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:msub><mml:mrow><mml:mi>r</mml:mi></mml:mrow><mml:mrow><mml:mi>m</mml:mi></mml:mrow></mml:msub></mml:math>\n<inline-graphic xlink:href=\"ercad443dieqn4.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>)) and liquid water adiabatic fraction (AF) indicates that the entrainment effect has increased relative dispersion significantly (2–3 times larger) in these clouds. Effective radius (<inline-formula>\n<tex-math>\n<?CDATA ${r}_{{eff}}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:msub><mml:mrow><mml:mi>r</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant=\"italic\">eff</mml:mi></mml:mrow></mml:msub></mml:math>\n<inline-graphic xlink:href=\"ercad443dieqn5.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>) is found to be proportional to mean volume radius (<inline-formula>\n<tex-math>\n<?CDATA ${r}_{v}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:msub><mml:mrow><mml:mi>r</mml:mi></mml:mrow><mml:mrow><mml:mi>v</mml:mi></mml:mrow></mml:msub></mml:math>\n<inline-graphic xlink:href=\"ercad443dieqn6.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>) with a proportionality constant (<inline-formula>\n<tex-math>\n<?CDATA $\\beta $?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mi>β</mml:mi></mml:math>\n<inline-graphic xlink:href=\"ercad443dieqn7.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>) that varies between 1.0–1.6, depending on the spectral dispersion parameter. Drop size distributions for the small cloud droplets with size range 2–50 <inline-formula>\n<tex-math>\n<?CDATA $\\mu $?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mi>μ</mml:mi></mml:math>\n<inline-graphic xlink:href=\"ercad443dieqn8.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>m and the large drizzle drops (or ice hydrometeors) with size range 100–6400 <inline-formula>\n<tex-math>\n<?CDATA $\\mu $?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mi>μ</mml:mi></mml:math>\n<inline-graphic xlink:href=\"ercad443dieqn9.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>m are parameterized using the gamma function distributions useful for large-scale cloud models.","PeriodicalId":48496,"journal":{"name":"Environmental Research Communications","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-situ observations of cloud microphysics over Arabian Sea during dust transport events\",\"authors\":\"Sudarsan Bera, Sachin Patade, Thara Prabhakaran\",\"doi\":\"10.1088/2515-7620/ad443d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The unique <italic toggle=\\\"yes\\\">in situ</italic> measurements of clouds and precipitation within the shallow and deep cumulus over the north-eastern Arabian Sea region during the Indian monsoon are illustrated in this study with a focus on droplet spectral parameters. The observational period showed a significant incursion of Arabian dust and the presence of giant cloud condensation nuclei (GCCN), modifying the cloud and precipitation spectral properties. Warm rain microphysics supported the mixed-phase development in these clouds and exhibited hydrometeors of snow, graupel and large aggregates as part of ice processes. Cloud base droplet number concentration is about 142 <inline-formula>\\n<tex-math>\\n<?CDATA $\\\\pm $?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mo>±</mml:mo></mml:math>\\n<inline-graphic xlink:href=\\\"ercad443dieqn1.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> 79 cm<sup>−3</sup> which is one third of the cloud condensation nuclei (CCN) number concentration at 0.2% supersaturation. A rapid broadening of droplet size distribution (DSD) near to the cloud base was noted in contrast to polluted continental clouds. Relationship between the relative dispersion (<inline-formula>\\n<tex-math>\\n<?CDATA $\\\\varepsilon ;$?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mi>ε</mml:mi><mml:mo>;</mml:mo></mml:math>\\n<inline-graphic xlink:href=\\\"ercad443dieqn2.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> the ratio of DSD spectral width (<inline-formula>\\n<tex-math>\\n<?CDATA $\\\\sigma $?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mi>σ</mml:mi></mml:math>\\n<inline-graphic xlink:href=\\\"ercad443dieqn3.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>) to mean radius (<inline-formula>\\n<tex-math>\\n<?CDATA ${r}_{m}$?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:msub><mml:mrow><mml:mi>r</mml:mi></mml:mrow><mml:mrow><mml:mi>m</mml:mi></mml:mrow></mml:msub></mml:math>\\n<inline-graphic xlink:href=\\\"ercad443dieqn4.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>)) and liquid water adiabatic fraction (AF) indicates that the entrainment effect has increased relative dispersion significantly (2–3 times larger) in these clouds. Effective radius (<inline-formula>\\n<tex-math>\\n<?CDATA ${r}_{{eff}}$?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:msub><mml:mrow><mml:mi>r</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant=\\\"italic\\\">eff</mml:mi></mml:mrow></mml:msub></mml:math>\\n<inline-graphic xlink:href=\\\"ercad443dieqn5.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>) is found to be proportional to mean volume radius (<inline-formula>\\n<tex-math>\\n<?CDATA ${r}_{v}$?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:msub><mml:mrow><mml:mi>r</mml:mi></mml:mrow><mml:mrow><mml:mi>v</mml:mi></mml:mrow></mml:msub></mml:math>\\n<inline-graphic xlink:href=\\\"ercad443dieqn6.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>) with a proportionality constant (<inline-formula>\\n<tex-math>\\n<?CDATA $\\\\beta $?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mi>β</mml:mi></mml:math>\\n<inline-graphic xlink:href=\\\"ercad443dieqn7.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>) that varies between 1.0–1.6, depending on the spectral dispersion parameter. Drop size distributions for the small cloud droplets with size range 2–50 <inline-formula>\\n<tex-math>\\n<?CDATA $\\\\mu $?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mi>μ</mml:mi></mml:math>\\n<inline-graphic xlink:href=\\\"ercad443dieqn8.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>m and the large drizzle drops (or ice hydrometeors) with size range 100–6400 <inline-formula>\\n<tex-math>\\n<?CDATA $\\\\mu $?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mi>μ</mml:mi></mml:math>\\n<inline-graphic xlink:href=\\\"ercad443dieqn9.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>m are parameterized using the gamma function distributions useful for large-scale cloud models.\",\"PeriodicalId\":48496,\"journal\":{\"name\":\"Environmental Research Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Research Communications\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1088/2515-7620/ad443d\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research Communications","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1088/2515-7620/ad443d","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
In-situ observations of cloud microphysics over Arabian Sea during dust transport events
The unique in situ measurements of clouds and precipitation within the shallow and deep cumulus over the north-eastern Arabian Sea region during the Indian monsoon are illustrated in this study with a focus on droplet spectral parameters. The observational period showed a significant incursion of Arabian dust and the presence of giant cloud condensation nuclei (GCCN), modifying the cloud and precipitation spectral properties. Warm rain microphysics supported the mixed-phase development in these clouds and exhibited hydrometeors of snow, graupel and large aggregates as part of ice processes. Cloud base droplet number concentration is about 142 ± 79 cm−3 which is one third of the cloud condensation nuclei (CCN) number concentration at 0.2% supersaturation. A rapid broadening of droplet size distribution (DSD) near to the cloud base was noted in contrast to polluted continental clouds. Relationship between the relative dispersion (ε; the ratio of DSD spectral width (σ) to mean radius (rm)) and liquid water adiabatic fraction (AF) indicates that the entrainment effect has increased relative dispersion significantly (2–3 times larger) in these clouds. Effective radius (reff) is found to be proportional to mean volume radius (rv) with a proportionality constant (β) that varies between 1.0–1.6, depending on the spectral dispersion parameter. Drop size distributions for the small cloud droplets with size range 2–50 μm and the large drizzle drops (or ice hydrometeors) with size range 100–6400 μm are parameterized using the gamma function distributions useful for large-scale cloud models.