相互作用、多重激发系统中的量子态转移

Alexander Yue, Rubem Mondaini, Qiujiang Guo, Richard T. Scalettar
{"title":"相互作用、多重激发系统中的量子态转移","authors":"Alexander Yue, Rubem Mondaini, Qiujiang Guo, Richard T. Scalettar","doi":"arxiv-2405.06853","DOIUrl":null,"url":null,"abstract":"Quantum state transfer (QST) describes the coherent passage of quantum\ninformation from one node in a network to another. Experiments on QST span a\ndiverse set of platforms and currently report transport across up to tens of\nnodes in times of several hundred nanoseconds with fidelities that can approach\n90% or more. Theoretical studies examine both the lossless time evolution\nassociated with a given (Hermitian) lattice Hamiltonian and methods based on\nthe master equation that allows for losses. In this paper, we describe Monte\nCarlo techniques which enable the discovery of a Hamiltonian that gives\nhigh-fidelity QST. We benchmark our approach in geometries appropriate to\ncoupled optical cavity-emitter arrays and discuss connections to condensed\nmatter Hamiltonians of localized orbitals coupled to conduction bands. The\nresulting Jaynes-Cummings-Hubbard and periodic Anderson models can, in\nprinciple, be engineered in appropriate hardware to give efficient QST.","PeriodicalId":501211,"journal":{"name":"arXiv - PHYS - Other Condensed Matter","volume":"181 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum State Transfer in Interacting, Multiple-Excitation Systems\",\"authors\":\"Alexander Yue, Rubem Mondaini, Qiujiang Guo, Richard T. Scalettar\",\"doi\":\"arxiv-2405.06853\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum state transfer (QST) describes the coherent passage of quantum\\ninformation from one node in a network to another. Experiments on QST span a\\ndiverse set of platforms and currently report transport across up to tens of\\nnodes in times of several hundred nanoseconds with fidelities that can approach\\n90% or more. Theoretical studies examine both the lossless time evolution\\nassociated with a given (Hermitian) lattice Hamiltonian and methods based on\\nthe master equation that allows for losses. In this paper, we describe Monte\\nCarlo techniques which enable the discovery of a Hamiltonian that gives\\nhigh-fidelity QST. We benchmark our approach in geometries appropriate to\\ncoupled optical cavity-emitter arrays and discuss connections to condensed\\nmatter Hamiltonians of localized orbitals coupled to conduction bands. The\\nresulting Jaynes-Cummings-Hubbard and periodic Anderson models can, in\\nprinciple, be engineered in appropriate hardware to give efficient QST.\",\"PeriodicalId\":501211,\"journal\":{\"name\":\"arXiv - PHYS - Other Condensed Matter\",\"volume\":\"181 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Other Condensed Matter\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.06853\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Other Condensed Matter","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.06853","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

量子态传输(QST)描述了量子信息从网络中的一个节点到另一个节点的相干传递。有关 QST 的实验跨越了一系列不同的平台,目前的报告显示,在几百纳秒的时间内,量子态传输跨越了多达几十个节点,保真度接近 90% 或更高。理论研究既研究了与给定(赫米特)晶格哈密顿相关的无损耗时间演化,也研究了基于允许损耗的主方程的方法。在本文中,我们介绍了蒙特卡洛技术,该技术能够发现一种能够提供高保真 QST 的哈密顿方程。我们在适合耦合光腔-发射器阵列的几何结构中对我们的方法进行了基准测试,并讨论了与传导带耦合的局部轨道的凝聚态哈密顿方程的联系。由此得出的杰恩斯-康明斯-哈伯德模型和周期性安德森模型原则上可以在适当的硬件中设计,以提供高效的 QST。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum State Transfer in Interacting, Multiple-Excitation Systems
Quantum state transfer (QST) describes the coherent passage of quantum information from one node in a network to another. Experiments on QST span a diverse set of platforms and currently report transport across up to tens of nodes in times of several hundred nanoseconds with fidelities that can approach 90% or more. Theoretical studies examine both the lossless time evolution associated with a given (Hermitian) lattice Hamiltonian and methods based on the master equation that allows for losses. In this paper, we describe Monte Carlo techniques which enable the discovery of a Hamiltonian that gives high-fidelity QST. We benchmark our approach in geometries appropriate to coupled optical cavity-emitter arrays and discuss connections to condensed matter Hamiltonians of localized orbitals coupled to conduction bands. The resulting Jaynes-Cummings-Hubbard and periodic Anderson models can, in principle, be engineered in appropriate hardware to give efficient QST.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信