{"title":"基于量子的随机稀疏 Kaczmarz,适用于损坏和噪声线性系统","authors":"Lu Zhang, Hongxia Wang, Hui Zhang","doi":"10.1007/s11075-024-01844-6","DOIUrl":null,"url":null,"abstract":"<p>The randomized Kaczmarz method, along with its recently developed variants, has become a popular tool for dealing with large-scale linear systems. However, these methods usually fail to converge when the linear systems are affected by heavy corruption, which is common in many practical applications. In this study, we develop a new variant of the randomized sparse Kaczmarz method with linear convergence guarantees, by making use of the quantile technique to detect corruptions. Moreover, we incorporate the averaged block technique into the proposed method to achieve parallel computation and acceleration. Finally, the proposed algorithms are illustrated to be very efficient through extensive numerical experiments.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantile-based random sparse Kaczmarz for corrupted and noisy linear systems\",\"authors\":\"Lu Zhang, Hongxia Wang, Hui Zhang\",\"doi\":\"10.1007/s11075-024-01844-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The randomized Kaczmarz method, along with its recently developed variants, has become a popular tool for dealing with large-scale linear systems. However, these methods usually fail to converge when the linear systems are affected by heavy corruption, which is common in many practical applications. In this study, we develop a new variant of the randomized sparse Kaczmarz method with linear convergence guarantees, by making use of the quantile technique to detect corruptions. Moreover, we incorporate the averaged block technique into the proposed method to achieve parallel computation and acceleration. Finally, the proposed algorithms are illustrated to be very efficient through extensive numerical experiments.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11075-024-01844-6\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11075-024-01844-6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Quantile-based random sparse Kaczmarz for corrupted and noisy linear systems
The randomized Kaczmarz method, along with its recently developed variants, has become a popular tool for dealing with large-scale linear systems. However, these methods usually fail to converge when the linear systems are affected by heavy corruption, which is common in many practical applications. In this study, we develop a new variant of the randomized sparse Kaczmarz method with linear convergence guarantees, by making use of the quantile technique to detect corruptions. Moreover, we incorporate the averaged block technique into the proposed method to achieve parallel computation and acceleration. Finally, the proposed algorithms are illustrated to be very efficient through extensive numerical experiments.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.