{"title":"基于量子的随机稀疏 Kaczmarz,适用于损坏和噪声线性系统","authors":"Lu Zhang, Hongxia Wang, Hui Zhang","doi":"10.1007/s11075-024-01844-6","DOIUrl":null,"url":null,"abstract":"<p>The randomized Kaczmarz method, along with its recently developed variants, has become a popular tool for dealing with large-scale linear systems. However, these methods usually fail to converge when the linear systems are affected by heavy corruption, which is common in many practical applications. In this study, we develop a new variant of the randomized sparse Kaczmarz method with linear convergence guarantees, by making use of the quantile technique to detect corruptions. Moreover, we incorporate the averaged block technique into the proposed method to achieve parallel computation and acceleration. Finally, the proposed algorithms are illustrated to be very efficient through extensive numerical experiments.</p>","PeriodicalId":54709,"journal":{"name":"Numerical Algorithms","volume":"39 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantile-based random sparse Kaczmarz for corrupted and noisy linear systems\",\"authors\":\"Lu Zhang, Hongxia Wang, Hui Zhang\",\"doi\":\"10.1007/s11075-024-01844-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The randomized Kaczmarz method, along with its recently developed variants, has become a popular tool for dealing with large-scale linear systems. However, these methods usually fail to converge when the linear systems are affected by heavy corruption, which is common in many practical applications. In this study, we develop a new variant of the randomized sparse Kaczmarz method with linear convergence guarantees, by making use of the quantile technique to detect corruptions. Moreover, we incorporate the averaged block technique into the proposed method to achieve parallel computation and acceleration. Finally, the proposed algorithms are illustrated to be very efficient through extensive numerical experiments.</p>\",\"PeriodicalId\":54709,\"journal\":{\"name\":\"Numerical Algorithms\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Algorithms\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11075-024-01844-6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Algorithms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11075-024-01844-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Quantile-based random sparse Kaczmarz for corrupted and noisy linear systems
The randomized Kaczmarz method, along with its recently developed variants, has become a popular tool for dealing with large-scale linear systems. However, these methods usually fail to converge when the linear systems are affected by heavy corruption, which is common in many practical applications. In this study, we develop a new variant of the randomized sparse Kaczmarz method with linear convergence guarantees, by making use of the quantile technique to detect corruptions. Moreover, we incorporate the averaged block technique into the proposed method to achieve parallel computation and acceleration. Finally, the proposed algorithms are illustrated to be very efficient through extensive numerical experiments.
期刊介绍:
The journal Numerical Algorithms is devoted to numerical algorithms. It publishes original and review papers on all the aspects of numerical algorithms: new algorithms, theoretical results, implementation, numerical stability, complexity, parallel computing, subroutines, and applications. Papers on computer algebra related to obtaining numerical results will also be considered. It is intended to publish only high quality papers containing material not published elsewhere.