利用深度突变扫描微调蛋白质语言模型,提高变异效应预测能力

Aleix Lafita, Ferran Gonzalez, Mahmoud Hossam, Paul Smyth, Jacob Deasy, Ari Allyn-Feuer, Daniel Seaton, Stephen Young
{"title":"利用深度突变扫描微调蛋白质语言模型,提高变异效应预测能力","authors":"Aleix Lafita, Ferran Gonzalez, Mahmoud Hossam, Paul Smyth, Jacob Deasy, Ari Allyn-Feuer, Daniel Seaton, Stephen Young","doi":"arxiv-2405.06729","DOIUrl":null,"url":null,"abstract":"Protein Language Models (PLMs) have emerged as performant and scalable tools\nfor predicting the functional impact and clinical significance of\nprotein-coding variants, but they still lag experimental accuracy. Here, we\npresent a novel fine-tuning approach to improve the performance of PLMs with\nexperimental maps of variant effects from Deep Mutational Scanning (DMS) assays\nusing a Normalised Log-odds Ratio (NLR) head. We find consistent improvements\nin a held-out protein test set, and on independent DMS and clinical variant\nannotation benchmarks from ProteinGym and ClinVar. These findings demonstrate\nthat DMS is a promising source of sequence diversity and supervised training\ndata for improving the performance of PLMs for variant effect prediction.","PeriodicalId":501070,"journal":{"name":"arXiv - QuanBio - Genomics","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fine-tuning Protein Language Models with Deep Mutational Scanning improves Variant Effect Prediction\",\"authors\":\"Aleix Lafita, Ferran Gonzalez, Mahmoud Hossam, Paul Smyth, Jacob Deasy, Ari Allyn-Feuer, Daniel Seaton, Stephen Young\",\"doi\":\"arxiv-2405.06729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Protein Language Models (PLMs) have emerged as performant and scalable tools\\nfor predicting the functional impact and clinical significance of\\nprotein-coding variants, but they still lag experimental accuracy. Here, we\\npresent a novel fine-tuning approach to improve the performance of PLMs with\\nexperimental maps of variant effects from Deep Mutational Scanning (DMS) assays\\nusing a Normalised Log-odds Ratio (NLR) head. We find consistent improvements\\nin a held-out protein test set, and on independent DMS and clinical variant\\nannotation benchmarks from ProteinGym and ClinVar. These findings demonstrate\\nthat DMS is a promising source of sequence diversity and supervised training\\ndata for improving the performance of PLMs for variant effect prediction.\",\"PeriodicalId\":501070,\"journal\":{\"name\":\"arXiv - QuanBio - Genomics\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Genomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.06729\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.06729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

蛋白质语言模型(PLMs)已成为预测蛋白质编码变异的功能影响和临床意义的高性能、可扩展的工具,但其准确性仍落后于实验准确性。在这里,我们提出了一种新颖的微调方法,利用归一化对数比率(NLR)头,通过深度突变扫描(DMS)测定的变异效应实验图来提高 PLM 的性能。我们发现,DMS 和来自 ProteinGym 和 ClinVar 的临床变异注释基准在蛋白质测试集、独立 DMS 和临床变异注释基准上都有一致的改进。这些研究结果表明,DMS 是序列多样性和监督训练数据的理想来源,可以提高 PLM 在变异效应预测方面的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fine-tuning Protein Language Models with Deep Mutational Scanning improves Variant Effect Prediction
Protein Language Models (PLMs) have emerged as performant and scalable tools for predicting the functional impact and clinical significance of protein-coding variants, but they still lag experimental accuracy. Here, we present a novel fine-tuning approach to improve the performance of PLMs with experimental maps of variant effects from Deep Mutational Scanning (DMS) assays using a Normalised Log-odds Ratio (NLR) head. We find consistent improvements in a held-out protein test set, and on independent DMS and clinical variant annotation benchmarks from ProteinGym and ClinVar. These findings demonstrate that DMS is a promising source of sequence diversity and supervised training data for improving the performance of PLMs for variant effect prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信