{"title":"在纵向数据混合物中进行聚类和精确有限样本模型选择的贝叶斯方法","authors":"M. Corneli, E. Erosheva, X. Qian, M. Lorenzi","doi":"10.1007/s00180-024-01501-5","DOIUrl":null,"url":null,"abstract":"<p>We consider mixtures of longitudinal trajectories, where one trajectory contains measurements over time of the variable of interest for one individual and each individual belongs to one cluster. The number of clusters as well as individual cluster memberships are unknown and must be inferred. We propose an original Bayesian clustering framework that allows us to obtain an exact finite-sample model selection criterion for selecting the number of clusters. Our finite-sample approach is more flexible and parsimonious than asymptotic alternatives such as Bayesian information criterion or integrated classification likelihood criterion in the choice of the number of clusters. Moreover, our approach has other desirable qualities: (i) it keeps the computational effort of the clustering algorithm under control and (ii) it generalizes to several families of regression mixture models, from linear to purely non-parametric. We test our method on simulated datasets as well as on a real world dataset from the Alzheimer’s disease neuroimaging initative database.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Bayesian approach for clustering and exact finite-sample model selection in longitudinal data mixtures\",\"authors\":\"M. Corneli, E. Erosheva, X. Qian, M. Lorenzi\",\"doi\":\"10.1007/s00180-024-01501-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider mixtures of longitudinal trajectories, where one trajectory contains measurements over time of the variable of interest for one individual and each individual belongs to one cluster. The number of clusters as well as individual cluster memberships are unknown and must be inferred. We propose an original Bayesian clustering framework that allows us to obtain an exact finite-sample model selection criterion for selecting the number of clusters. Our finite-sample approach is more flexible and parsimonious than asymptotic alternatives such as Bayesian information criterion or integrated classification likelihood criterion in the choice of the number of clusters. Moreover, our approach has other desirable qualities: (i) it keeps the computational effort of the clustering algorithm under control and (ii) it generalizes to several families of regression mixture models, from linear to purely non-parametric. We test our method on simulated datasets as well as on a real world dataset from the Alzheimer’s disease neuroimaging initative database.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00180-024-01501-5\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00180-024-01501-5","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A Bayesian approach for clustering and exact finite-sample model selection in longitudinal data mixtures
We consider mixtures of longitudinal trajectories, where one trajectory contains measurements over time of the variable of interest for one individual and each individual belongs to one cluster. The number of clusters as well as individual cluster memberships are unknown and must be inferred. We propose an original Bayesian clustering framework that allows us to obtain an exact finite-sample model selection criterion for selecting the number of clusters. Our finite-sample approach is more flexible and parsimonious than asymptotic alternatives such as Bayesian information criterion or integrated classification likelihood criterion in the choice of the number of clusters. Moreover, our approach has other desirable qualities: (i) it keeps the computational effort of the clustering algorithm under control and (ii) it generalizes to several families of regression mixture models, from linear to purely non-parametric. We test our method on simulated datasets as well as on a real world dataset from the Alzheimer’s disease neuroimaging initative database.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.