{"title":"基于排序的零增强模型的高效回归分析","authors":"Deborah Kanda, Jingjing Yin, Xinyan Zhang, Hani Samawi","doi":"10.1007/s00180-024-01503-3","DOIUrl":null,"url":null,"abstract":"<p>Several zero-augmented models exist for estimation involving outcomes with large numbers of zero. Two of such models for handling count endpoints are zero-inflated and hurdle regression models. In this article, we apply the extreme ranked set sampling (ERSS) scheme in estimation using zero-inflated and hurdle regression models. We provide theoretical derivations showing superiority of ERSS compared to simple random sampling (SRS) using these zero-augmented models. A simulation study is also conducted to compare the efficiency of ERSS to SRS and lastly, we illustrate applications with real data sets.</p>","PeriodicalId":55223,"journal":{"name":"Computational Statistics","volume":"5 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient regression analyses with zero-augmented models based on ranking\",\"authors\":\"Deborah Kanda, Jingjing Yin, Xinyan Zhang, Hani Samawi\",\"doi\":\"10.1007/s00180-024-01503-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Several zero-augmented models exist for estimation involving outcomes with large numbers of zero. Two of such models for handling count endpoints are zero-inflated and hurdle regression models. In this article, we apply the extreme ranked set sampling (ERSS) scheme in estimation using zero-inflated and hurdle regression models. We provide theoretical derivations showing superiority of ERSS compared to simple random sampling (SRS) using these zero-augmented models. A simulation study is also conducted to compare the efficiency of ERSS to SRS and lastly, we illustrate applications with real data sets.</p>\",\"PeriodicalId\":55223,\"journal\":{\"name\":\"Computational Statistics\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00180-024-01503-3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00180-024-01503-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Efficient regression analyses with zero-augmented models based on ranking
Several zero-augmented models exist for estimation involving outcomes with large numbers of zero. Two of such models for handling count endpoints are zero-inflated and hurdle regression models. In this article, we apply the extreme ranked set sampling (ERSS) scheme in estimation using zero-inflated and hurdle regression models. We provide theoretical derivations showing superiority of ERSS compared to simple random sampling (SRS) using these zero-augmented models. A simulation study is also conducted to compare the efficiency of ERSS to SRS and lastly, we illustrate applications with real data sets.
期刊介绍:
Computational Statistics (CompStat) is an international journal which promotes the publication of applications and methodological research in the field of Computational Statistics. The focus of papers in CompStat is on the contribution to and influence of computing on statistics and vice versa. The journal provides a forum for computer scientists, mathematicians, and statisticians in a variety of fields of statistics such as biometrics, econometrics, data analysis, graphics, simulation, algorithms, knowledge based systems, and Bayesian computing. CompStat publishes hardware, software plus package reports.