上三角算子矩阵及其各种谱的稳定性

IF 1.1 3区 数学 Q1 MATHEMATICS
Nikola Sarajlija
{"title":"上三角算子矩阵及其各种谱的稳定性","authors":"Nikola Sarajlija","doi":"10.1007/s00025-024-02181-9","DOIUrl":null,"url":null,"abstract":"<p>Denote by <span>\\(T_n^d(A)\\)</span> an upper triangular operator matrix of dimension <span>\\(n\\in \\mathbb {N}\\)</span> whose diagonal entries <span>\\(D_i,\\ 1\\le i\\le n\\)</span>, are known, and <span>\\(A=(A_{ij})_{1\\le i&lt;j\\le n}\\)</span> is an unknown tuple of operators. This article is aimed at investigation of defect spectrum <span>\\(\\mathcal {D}^{\\sigma _*}=\\bigcup _{i=1}^n\\sigma _*(D_i){\\setminus }\\sigma _*(T_n^d(A))\\)</span>, where <span>\\(\\sigma _*\\)</span> is a spectrum corresponding to various types of invertibility: (left, right) invertibility, (left, right) Fredholm invertibility, left/right Weyl invertibility. We give characterizations for each of the previous types, and provide some sufficent conditions for the stability of certain spectrum (the case <span>\\(\\mathcal {D}^{\\sigma _*}=\\emptyset \\)</span>). The results are proved for all matrix dimensions <span>\\(n\\ge 2\\)</span>, and they hold in arbitrary Hilbert spaces without assuming separability, thus generalizing results from Wu and Huang (Ann Funct Anal 11(3):780–798, 2020; Acta Math Sin 36(7):783–796, 2020). We also retrieve a result from Bai et al. (J Math Anal Appl 434(2):1065–1076, 2016) in the case <span>\\(n=2\\)</span>, and we provide a precise form of the well known ‘filling in holes’ result from Han et al. (Proc Am Math Soc 128(1):119–123, 2000).</p>","PeriodicalId":54490,"journal":{"name":"Results in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Upper Triangular Operator Matrices and Stability of Their Various Spectra\",\"authors\":\"Nikola Sarajlija\",\"doi\":\"10.1007/s00025-024-02181-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Denote by <span>\\\\(T_n^d(A)\\\\)</span> an upper triangular operator matrix of dimension <span>\\\\(n\\\\in \\\\mathbb {N}\\\\)</span> whose diagonal entries <span>\\\\(D_i,\\\\ 1\\\\le i\\\\le n\\\\)</span>, are known, and <span>\\\\(A=(A_{ij})_{1\\\\le i&lt;j\\\\le n}\\\\)</span> is an unknown tuple of operators. This article is aimed at investigation of defect spectrum <span>\\\\(\\\\mathcal {D}^{\\\\sigma _*}=\\\\bigcup _{i=1}^n\\\\sigma _*(D_i){\\\\setminus }\\\\sigma _*(T_n^d(A))\\\\)</span>, where <span>\\\\(\\\\sigma _*\\\\)</span> is a spectrum corresponding to various types of invertibility: (left, right) invertibility, (left, right) Fredholm invertibility, left/right Weyl invertibility. We give characterizations for each of the previous types, and provide some sufficent conditions for the stability of certain spectrum (the case <span>\\\\(\\\\mathcal {D}^{\\\\sigma _*}=\\\\emptyset \\\\)</span>). The results are proved for all matrix dimensions <span>\\\\(n\\\\ge 2\\\\)</span>, and they hold in arbitrary Hilbert spaces without assuming separability, thus generalizing results from Wu and Huang (Ann Funct Anal 11(3):780–798, 2020; Acta Math Sin 36(7):783–796, 2020). We also retrieve a result from Bai et al. (J Math Anal Appl 434(2):1065–1076, 2016) in the case <span>\\\\(n=2\\\\)</span>, and we provide a precise form of the well known ‘filling in holes’ result from Han et al. (Proc Am Math Soc 128(1):119–123, 2000).</p>\",\"PeriodicalId\":54490,\"journal\":{\"name\":\"Results in Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00025-024-02181-9\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00025-024-02181-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

用\(T_n^d(A)\表示维数为\(nin \mathbb {N}\)的上三角算子矩阵,其对角线项\(D_i,\1\le i\le n)是已知的,而\(A=(A_{ij})_{1\le i<j\le n}\)是未知的算子元组。本文旨在研究缺陷谱(\mathcal {D}^{\sigma _*}=\bigcup _{i=1}^n\sigma _*(D_i){\setminus }\sigma _*(T_n^d(A))),其中\(\sigma _*\)是与各种类型的可逆性相对应的谱:(左,右)可逆性,(左,右)弗雷德霍尔姆可逆性,左/右韦尔可逆性。我们给出了前几种类型的特征,并为某些谱的稳定性提供了一些充分条件((mathcal {D}^{sigma _*}=\emptyset \))。这些结果适用于所有矩阵维数(n\ge 2\),并且在任意希尔伯特空间中都成立,无需假设可分性,从而推广了吴和黄的结果(Ann Funct Anal 11(3):780-798, 2020; Acta Math Sin 36(7):783-796, 2020)。我们还检索了 Bai 等人 (J Math Anal Appl 434(2):1065-1076, 2016) 在 \(n=2\) 情形下的一个结果,并提供了 Han 等人 (Proc Am Math Soc 128(1):119-123, 2000) 众所周知的 "填洞 "结果的精确形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Upper Triangular Operator Matrices and Stability of Their Various Spectra

Denote by \(T_n^d(A)\) an upper triangular operator matrix of dimension \(n\in \mathbb {N}\) whose diagonal entries \(D_i,\ 1\le i\le n\), are known, and \(A=(A_{ij})_{1\le i<j\le n}\) is an unknown tuple of operators. This article is aimed at investigation of defect spectrum \(\mathcal {D}^{\sigma _*}=\bigcup _{i=1}^n\sigma _*(D_i){\setminus }\sigma _*(T_n^d(A))\), where \(\sigma _*\) is a spectrum corresponding to various types of invertibility: (left, right) invertibility, (left, right) Fredholm invertibility, left/right Weyl invertibility. We give characterizations for each of the previous types, and provide some sufficent conditions for the stability of certain spectrum (the case \(\mathcal {D}^{\sigma _*}=\emptyset \)). The results are proved for all matrix dimensions \(n\ge 2\), and they hold in arbitrary Hilbert spaces without assuming separability, thus generalizing results from Wu and Huang (Ann Funct Anal 11(3):780–798, 2020; Acta Math Sin 36(7):783–796, 2020). We also retrieve a result from Bai et al. (J Math Anal Appl 434(2):1065–1076, 2016) in the case \(n=2\), and we provide a precise form of the well known ‘filling in holes’ result from Han et al. (Proc Am Math Soc 128(1):119–123, 2000).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Mathematics
Results in Mathematics 数学-数学
CiteScore
1.90
自引率
4.50%
发文量
198
审稿时长
6-12 weeks
期刊介绍: Results in Mathematics (RM) publishes mainly research papers in all fields of pure and applied mathematics. In addition, it publishes summaries of any mathematical field and surveys of any mathematical subject provided they are designed to advance some recent mathematical development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信