论左 T 无蕴环

IF 1.1 3区 数学 Q1 MATHEMATICS
Ryszard R. Andruszkiewicz, Marek Kȩpczyk
{"title":"论左 T 无蕴环","authors":"Ryszard R. Andruszkiewicz, Marek Kȩpczyk","doi":"10.1007/s00025-024-02187-3","DOIUrl":null,"url":null,"abstract":"<p>It is shown that any ring being a sum of two left <i>T</i>-nilpotent subrings is left <i>T</i>-nilpotent. The paper contains the description of all the semigroups <i>S</i> such that an <i>S</i>-graded ring <span>\\(R=\\bigoplus _{s\\in S}A_s\\)</span> has the property that the left <i>T</i>-nilpotency of all subrings among the subgroups <span>\\(A_s\\)</span> of the additive group of <i>R</i> implies the left <i>T</i>-nilpotency of <i>R</i>. Furthermore, this result is extended to rings <i>R</i> being <i>S</i>-sums.</p>","PeriodicalId":54490,"journal":{"name":"Results in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Left T-Nilpotent Rings\",\"authors\":\"Ryszard R. Andruszkiewicz, Marek Kȩpczyk\",\"doi\":\"10.1007/s00025-024-02187-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>It is shown that any ring being a sum of two left <i>T</i>-nilpotent subrings is left <i>T</i>-nilpotent. The paper contains the description of all the semigroups <i>S</i> such that an <i>S</i>-graded ring <span>\\\\(R=\\\\bigoplus _{s\\\\in S}A_s\\\\)</span> has the property that the left <i>T</i>-nilpotency of all subrings among the subgroups <span>\\\\(A_s\\\\)</span> of the additive group of <i>R</i> implies the left <i>T</i>-nilpotency of <i>R</i>. Furthermore, this result is extended to rings <i>R</i> being <i>S</i>-sums.</p>\",\"PeriodicalId\":54490,\"journal\":{\"name\":\"Results in Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00025-024-02187-3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00025-024-02187-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文证明了任何由两个左 T-nilpotent 子环组成的环都是左 T-nilpotent 环。论文包含了对所有半群 S 的描述,这样一个 S 阶环 \(R=\bigoplus _{s\in S}A_s\) 具有这样的性质:R 的加法群 \(A_s\)的子群中所有子环的左 T-nilpotency 意味着 R 的左 T-nilpotency 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Left T-Nilpotent Rings

It is shown that any ring being a sum of two left T-nilpotent subrings is left T-nilpotent. The paper contains the description of all the semigroups S such that an S-graded ring \(R=\bigoplus _{s\in S}A_s\) has the property that the left T-nilpotency of all subrings among the subgroups \(A_s\) of the additive group of R implies the left T-nilpotency of R. Furthermore, this result is extended to rings R being S-sums.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Mathematics
Results in Mathematics 数学-数学
CiteScore
1.90
自引率
4.50%
发文量
198
审稿时长
6-12 weeks
期刊介绍: Results in Mathematics (RM) publishes mainly research papers in all fields of pure and applied mathematics. In addition, it publishes summaries of any mathematical field and surveys of any mathematical subject provided they are designed to advance some recent mathematical development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信