非阿贝尔简体还原链复合物的相对性

IF 1.1 3区 数学 Q1 MATHEMATICS
A. Zuevsky
{"title":"非阿贝尔简体还原链复合物的相对性","authors":"A. Zuevsky","doi":"10.1007/s00025-024-02188-2","DOIUrl":null,"url":null,"abstract":"<p>Chain total double complexes with reductive differentials for non-abelian simplexes with associated spaces are considered. It is conjectured that corresponding relative cohomology is equivalent to the coset space of vanishing functionals over non-vanishing functionals related to differentials of complexes. The conjecture is supported by the theorem for the case of spaces of correlation functions and generalized connections on vertex operator algebra bundles.</p>","PeriodicalId":54490,"journal":{"name":"Results in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relativity of Reductive Chain Complexes of Non-abelian Simplexes\",\"authors\":\"A. Zuevsky\",\"doi\":\"10.1007/s00025-024-02188-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Chain total double complexes with reductive differentials for non-abelian simplexes with associated spaces are considered. It is conjectured that corresponding relative cohomology is equivalent to the coset space of vanishing functionals over non-vanishing functionals related to differentials of complexes. The conjecture is supported by the theorem for the case of spaces of correlation functions and generalized connections on vertex operator algebra bundles.</p>\",\"PeriodicalId\":54490,\"journal\":{\"name\":\"Results in Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00025-024-02188-2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00025-024-02188-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究考虑了具有还原微分的非阿贝尔单纯形与相关空间的链式全双复。根据猜想,相应的相对同调等价于与复数微分相关的非消失函数的消失函数余集空间。该猜想得到了顶点算子代数束上相关函数空间和广义连接的定理的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relativity of Reductive Chain Complexes of Non-abelian Simplexes

Chain total double complexes with reductive differentials for non-abelian simplexes with associated spaces are considered. It is conjectured that corresponding relative cohomology is equivalent to the coset space of vanishing functionals over non-vanishing functionals related to differentials of complexes. The conjecture is supported by the theorem for the case of spaces of correlation functions and generalized connections on vertex operator algebra bundles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Mathematics
Results in Mathematics 数学-数学
CiteScore
1.90
自引率
4.50%
发文量
198
审稿时长
6-12 weeks
期刊介绍: Results in Mathematics (RM) publishes mainly research papers in all fields of pure and applied mathematics. In addition, it publishes summaries of any mathematical field and surveys of any mathematical subject provided they are designed to advance some recent mathematical development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信