分析闵科夫斯基空间中 Timelike 曲线流的几何方法论

IF 1.1 3区 数学 Q1 MATHEMATICS
Mehmet Bektaş, Dae Won Yoon, Zühal Küçükarslan Yüzbaşı
{"title":"分析闵科夫斯基空间中 Timelike 曲线流的几何方法论","authors":"Mehmet Bektaş, Dae Won Yoon, Zühal Küçükarslan Yüzbaşı","doi":"10.1007/s00025-024-02178-4","DOIUrl":null,"url":null,"abstract":"<p>The present study introduces an innovative link between integrable equations and the motion of timelike curves within a three-dimensional Minkowski space. This study aims to establish an anology between the modified generalizations of the Heisenberg spin chain model equation, a complex Korteweg–de Vries equation, and the Ablowitz–Kaup–Newell–Segur hierarchy systems of real type, respectively. This is accomplished through the application of specific functions, which are derived based on the curvatures and torsions of three distinct curves and their corresponding Frenet frames in a 3-dimensional Minkowski space. Making use of this method, the geometric derivation of the integrable equation has been demonstrated with success.</p>","PeriodicalId":54490,"journal":{"name":"Results in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometric Methodology for Analyzing Timelike Curve Flows in Minkowski Space\",\"authors\":\"Mehmet Bektaş, Dae Won Yoon, Zühal Küçükarslan Yüzbaşı\",\"doi\":\"10.1007/s00025-024-02178-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The present study introduces an innovative link between integrable equations and the motion of timelike curves within a three-dimensional Minkowski space. This study aims to establish an anology between the modified generalizations of the Heisenberg spin chain model equation, a complex Korteweg–de Vries equation, and the Ablowitz–Kaup–Newell–Segur hierarchy systems of real type, respectively. This is accomplished through the application of specific functions, which are derived based on the curvatures and torsions of three distinct curves and their corresponding Frenet frames in a 3-dimensional Minkowski space. Making use of this method, the geometric derivation of the integrable equation has been demonstrated with success.</p>\",\"PeriodicalId\":54490,\"journal\":{\"name\":\"Results in Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00025-024-02178-4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00025-024-02178-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了可积分方程与三维闵科夫斯基空间内时间曲线运动之间的创新联系。本研究旨在分别建立海森堡自旋链模型方程的修正广义、复 Korteweg-de Vries 方程和实型 Ablowitz-Kaup-Newell-Segur 层次系统之间的关联。这些函数是根据三维闵科夫斯基空间中三条不同曲线的曲率和扭转及其相应的弗雷尼特框架推导出来的。利用这种方法,成功地演示了可积分方程的几何推导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometric Methodology for Analyzing Timelike Curve Flows in Minkowski Space

The present study introduces an innovative link between integrable equations and the motion of timelike curves within a three-dimensional Minkowski space. This study aims to establish an anology between the modified generalizations of the Heisenberg spin chain model equation, a complex Korteweg–de Vries equation, and the Ablowitz–Kaup–Newell–Segur hierarchy systems of real type, respectively. This is accomplished through the application of specific functions, which are derived based on the curvatures and torsions of three distinct curves and their corresponding Frenet frames in a 3-dimensional Minkowski space. Making use of this method, the geometric derivation of the integrable equation has been demonstrated with success.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Mathematics
Results in Mathematics 数学-数学
CiteScore
1.90
自引率
4.50%
发文量
198
审稿时长
6-12 weeks
期刊介绍: Results in Mathematics (RM) publishes mainly research papers in all fields of pure and applied mathematics. In addition, it publishes summaries of any mathematical field and surveys of any mathematical subject provided they are designed to advance some recent mathematical development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信