经典离散正交多项式的斯特姆比较定理

IF 1.1 3区 数学 Q1 MATHEMATICS
A. Suzuki
{"title":"经典离散正交多项式的斯特姆比较定理","authors":"A. Suzuki","doi":"10.1007/s00025-024-02180-w","DOIUrl":null,"url":null,"abstract":"<p>In an earlier work (Castillo et al. in J Math Phys 61:103505, 2020), it was established, from a hypergeometric-type difference equation, tractable sufficient conditions for the monotonicity with respect to a real parameter of zeros of classical discrete orthogonal polynomials on linear, quadratic, q-linear, and q-quadratic grids. In this work, we continue with the study of zeros of these polynomials by giving a comparison theorem of Sturm type. As an application, we analyze in a simple way some relations between the zeros of certain classical discrete orthogonal polynomials.</p>","PeriodicalId":54490,"journal":{"name":"Results in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sturm’s Comparison Theorem for Classical Discrete Orthogonal Polynomials\",\"authors\":\"A. Suzuki\",\"doi\":\"10.1007/s00025-024-02180-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In an earlier work (Castillo et al. in J Math Phys 61:103505, 2020), it was established, from a hypergeometric-type difference equation, tractable sufficient conditions for the monotonicity with respect to a real parameter of zeros of classical discrete orthogonal polynomials on linear, quadratic, q-linear, and q-quadratic grids. In this work, we continue with the study of zeros of these polynomials by giving a comparison theorem of Sturm type. As an application, we analyze in a simple way some relations between the zeros of certain classical discrete orthogonal polynomials.</p>\",\"PeriodicalId\":54490,\"journal\":{\"name\":\"Results in Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00025-024-02180-w\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00025-024-02180-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在早先的工作(Castillo 等人,J Math Phys 61:103505, 2020)中,我们从超几何型差分方程出发,为线性、二次、q-线性和 q-二次网格上经典离散正交多项式的零点关于实参数的单调性建立了可行的充分条件。在这项工作中,我们通过给出斯特姆类型的比较定理,继续研究这些多项式的零点。作为应用,我们用简单的方法分析了某些经典离散正交多项式的零点之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Sturm’s Comparison Theorem for Classical Discrete Orthogonal Polynomials

Sturm’s Comparison Theorem for Classical Discrete Orthogonal Polynomials

In an earlier work (Castillo et al. in J Math Phys 61:103505, 2020), it was established, from a hypergeometric-type difference equation, tractable sufficient conditions for the monotonicity with respect to a real parameter of zeros of classical discrete orthogonal polynomials on linear, quadratic, q-linear, and q-quadratic grids. In this work, we continue with the study of zeros of these polynomials by giving a comparison theorem of Sturm type. As an application, we analyze in a simple way some relations between the zeros of certain classical discrete orthogonal polynomials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Mathematics
Results in Mathematics 数学-数学
CiteScore
1.90
自引率
4.50%
发文量
198
审稿时长
6-12 weeks
期刊介绍: Results in Mathematics (RM) publishes mainly research papers in all fields of pure and applied mathematics. In addition, it publishes summaries of any mathematical field and surveys of any mathematical subject provided they are designed to advance some recent mathematical development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信